Abstract
Zinc Oxide (ZnO) is a promising candidate material for optical and electronic devices due to its direct wide band gap (3.37 eV) and high exciton binding energy (60 meV). For applications in various fields such as light emitting diode (LED) and laser diodes, growth of p-type ZnO is a prerequisite. ZnO is an intrinsically n-type semiconductor. In this paper we report on the synthesis of Zinc Oxide-Carbon (ZnO:C) thin films using pulsed laser deposition technique (PLD). The deposition parameters were optimized to obtain high quality epitaxial ZnO films over a carbon layer. The structural and optical properties were studied by glazing index X-ray diffraction (GIXRD), photo-luminescence (PL), optical absorption (OA), and Raman spectroscopy. Rutherford backscattering spectroscopy (RBS), scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS) and atomic force microscopy (AFM) were employed to determine the composition and surface morphology of these thin films. The GIXRD pattern of the synthesized films exhibited hexagonal wurtzite crystal structure with a preferred (002) orientation. PL spectroscopy results showed that the emission intensity was maximum at ∼380 nm at a deposition temperature of 573 K. In the Raman spectra, the E 2 phonon frequency around at 438 cm -1 is a characteristic peak of the wurtzite lattice and could be seen in all samples. Furthermore, the optical direct band gap of ZnO films was found to be in the visible region. The growth of the epitaxial layer is discussed in the light of carbon atoms from the buffer layer. Our work demonstrates that the carbon is a novel dopant in the group of doped ZnO semiconductor materials. The introduction of carbon impurities enhanced the visible emission of red-green luminescence. It is concluded that the carbon impurities promote the zinc related native defect in ZnO.
Original language | English |
---|---|
Pages (from-to) | 5602-5611 |
Number of pages | 10 |
Journal | Journal of Nanoscience and Nanotechnology |
Volume | 10 |
Issue number | 9 |
DOIs | |
Publication status | Published - Sept 2010 |
Externally published | Yes |
Keywords
- Optical and Morphological Study
- PLD Technique
- Structural
- ZnO:C Thin Films
ASJC Scopus subject areas
- Bioengineering
- General Chemistry
- Biomedical Engineering
- General Materials Science
- Condensed Matter Physics