TY - GEN
T1 - WSN operability during persistent attack execution
AU - Stavrou, Eliana
AU - Pitsillides, Andreas
N1 - Publisher Copyright:
© 2016 IEEE.
PY - 2016/6/27
Y1 - 2016/6/27
N2 - Wireless Sensor Networks (WSNs) are utilized in a number of critical infrastructures, e.g. healthcare, disaster and relief. In sensitive environments, it is vital to maintain the operability of the network in an effort to support the decision-making process that depends on the sensors' observations. The network's operability can be maintained if observations can reach the specified destination and also if the sensors have adequate energy resources. The operability is negatively affected by security attacks, such as the selective forward and the denial of service (DoS), that can be executed against the WSN. The attacks' impact greatly depends on the attackers' capabilities such as their knowledge and the number of malicious nodes they hold. Currently, the research community focuses on addressing casual attackers that don't persist with their attack strategy. However, the proposed solutions cannot address persistent attackers that continue with their attack execution after the network has applied appropriate recovery countermeasures. Designing an adaptive recovery strategy is challenging as a number of issues need to be taken into consideration such as the network's density, the number of malicious nodes and the persistent attack strategy. This research work formulates a persistent attack strategy and investigates the integration of different recovery countermeasures in WSNs. The evaluation results demonstrate that an adaptive recovery strategy can enhance the network's recovery benefits, in terms of increased packet delivery and decreased energy consumption, and prolong its operability. Moreover, the observations made are envisioned to encourage new contributions in the area of adaptive intrusion recovery in WSNs.
AB - Wireless Sensor Networks (WSNs) are utilized in a number of critical infrastructures, e.g. healthcare, disaster and relief. In sensitive environments, it is vital to maintain the operability of the network in an effort to support the decision-making process that depends on the sensors' observations. The network's operability can be maintained if observations can reach the specified destination and also if the sensors have adequate energy resources. The operability is negatively affected by security attacks, such as the selective forward and the denial of service (DoS), that can be executed against the WSN. The attacks' impact greatly depends on the attackers' capabilities such as their knowledge and the number of malicious nodes they hold. Currently, the research community focuses on addressing casual attackers that don't persist with their attack strategy. However, the proposed solutions cannot address persistent attackers that continue with their attack execution after the network has applied appropriate recovery countermeasures. Designing an adaptive recovery strategy is challenging as a number of issues need to be taken into consideration such as the network's density, the number of malicious nodes and the persistent attack strategy. This research work formulates a persistent attack strategy and investigates the integration of different recovery countermeasures in WSNs. The evaluation results demonstrate that an adaptive recovery strategy can enhance the network's recovery benefits, in terms of increased packet delivery and decreased energy consumption, and prolong its operability. Moreover, the observations made are envisioned to encourage new contributions in the area of adaptive intrusion recovery in WSNs.
KW - WSN
KW - adaptability
KW - intrusion recovery
KW - persistent adversary
KW - recovery
KW - resilience
KW - survivability
UR - http://www.scopus.com/inward/record.url?scp=84979279949&partnerID=8YFLogxK
U2 - 10.1109/ICT.2016.7500448
DO - 10.1109/ICT.2016.7500448
M3 - Conference contribution
AN - SCOPUS:84979279949
T3 - 2016 23rd International Conference on Telecommunications, ICT 2016
BT - 2016 23rd International Conference on Telecommunications, ICT 2016
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 23rd International Conference on Telecommunications, ICT 2016
Y2 - 16 May 2016 through 18 May 2016
ER -