Abstract
Distributed generation (DG) plays a vital role in electrical power networks. However, power loss reduction, voltage profile improvement, friendly environment, and reliability are all benefits of DG units. In this research work, a worthwhile methodology is recommended for optimal allocation of traditional (gas turbine) and renewable energy sources that are based on distributed generators which include solar and wind in the distribution system. The major objective of the research paper is the minimization of real, reactive power losses and emissions produced during the application of these conventional sources. Originally, the best locations to place this DG are identified using the concept of water, energy, and food algorithm (WEFA). The number and sizes of these renewable energy sources selected (wind and solar) are determined by applying the concepts of the Dragonfly Algorithm. The Weibull and beta distribution functions are modeled to extract the exact position to fix our DGs to minimize losses within the distribution network. To assess the performance of WEF five different cases scenario considered are DG capacity, Location of Bus, voltage profile, maximum power loss as well as utilization rate. The proposed WEF Algorithm is tested on the IEEE standard 33-bus system. The simulated results were compared with others found in literature and found to be better in terms of power loss reductions.
Original language | English |
---|---|
Article number | 2242 |
Journal | Energies |
Volume | 15 |
Issue number | 6 |
DOIs | |
Publication status | Published - 1 Mar 2022 |
Keywords
- Distributed Generations (DGs)
- distributed energy resources modeling (DER)
- dragonfly algorithm (DA)
- power loss minimization
- water, energy, and food algorithm (WEFA)
ASJC Scopus subject areas
- Renewable Energy, Sustainability and the Environment
- Building and Construction
- Fuel Technology
- Engineering (miscellaneous)
- Energy Engineering and Power Technology
- Energy (miscellaneous)
- Control and Optimization
- Electrical and Electronic Engineering