TY - JOUR
T1 - Waste to energy feasibility, challenges, and perspective in municipal solid waste incineration and implementation
T2 - A case study for Pakistan
AU - Zafar, Abdul Mannan
AU - Shahid, Sahar
AU - Nawaz, Muhammad Imran
AU - Mustafa, Jawad
AU - Iftekhar, Sidra
AU - Ahmed, Iftikhar
AU - Tabraiz, Shamas
AU - Bontempi, Elza
AU - Assad, Muhammad
AU - Ghafoor, Fatima
AU - Al-Farraj, Saleh
AU - Sillanpää, Mika
AU - Souissi, Sami
N1 - Publisher Copyright:
© 2024 The Author(s)
PY - 2024/5/15
Y1 - 2024/5/15
N2 - Pakistan faces social and health issues due to the mismanagement of municipal solid waste (MSW) in urban and rural areas. Unhygienic conditions due to roadside disposal of MSW negatively affect society, aesthetics, economy, and tourism. This study aims to determine the potential of thermal energy-based MSW incineration technology for electricity generation and waste volume reduction in six major cities in Punjab, namely Lahore, Rawalpindi, Islamabad, Faisalabad, Gujranwala, and Sialkot. In this study, the heat content was calculated using the modified Dulong's equation for the calorific value (CV). Population, waste generation rate, waste characteristics, moisture content, and local public practices also affect energy potential and were considered in the calculations of electricity generation potential. Furthermore, three different sensitivity analysis trials of the power generation capacity were performed with various waste-to-energy (WtE) plant output efficiencies. The analysis of greenhouse gas (GHG) emissions from MSW incineration and CO2 reduction was compared with existing local practices. For WtE potential, Lahore has an energy recovery of 552 kWh/ton of MSW. Carbon footprints can be reduced by incinerating waste rather than disposal through pollution-generating local practices, such as open burning. The study results showed that MSW handling in Punjab can be utilized for WtE generation, a potential alternative to fossil fuel combustion for sustainable energy solutions.
AB - Pakistan faces social and health issues due to the mismanagement of municipal solid waste (MSW) in urban and rural areas. Unhygienic conditions due to roadside disposal of MSW negatively affect society, aesthetics, economy, and tourism. This study aims to determine the potential of thermal energy-based MSW incineration technology for electricity generation and waste volume reduction in six major cities in Punjab, namely Lahore, Rawalpindi, Islamabad, Faisalabad, Gujranwala, and Sialkot. In this study, the heat content was calculated using the modified Dulong's equation for the calorific value (CV). Population, waste generation rate, waste characteristics, moisture content, and local public practices also affect energy potential and were considered in the calculations of electricity generation potential. Furthermore, three different sensitivity analysis trials of the power generation capacity were performed with various waste-to-energy (WtE) plant output efficiencies. The analysis of greenhouse gas (GHG) emissions from MSW incineration and CO2 reduction was compared with existing local practices. For WtE potential, Lahore has an energy recovery of 552 kWh/ton of MSW. Carbon footprints can be reduced by incinerating waste rather than disposal through pollution-generating local practices, such as open burning. The study results showed that MSW handling in Punjab can be utilized for WtE generation, a potential alternative to fossil fuel combustion for sustainable energy solutions.
KW - Carbon footprints
KW - Energy potential
KW - Municipal solid waste
KW - Revenue collection
KW - Sustainability
UR - http://www.scopus.com/inward/record.url?scp=85185519443&partnerID=8YFLogxK
U2 - 10.1016/j.ceja.2024.100595
DO - 10.1016/j.ceja.2024.100595
M3 - Article
AN - SCOPUS:85185519443
SN - 2666-8211
VL - 18
JO - Chemical Engineering Journal Advances
JF - Chemical Engineering Journal Advances
M1 - 100595
ER -