TY - JOUR
T1 - Validation of large-volume batch solar reactors for the treatment of rainwater in field trials in sub-Saharan Africa
AU - Reyneke, B.
AU - Ndlovu, T.
AU - Vincent, M. B.
AU - Martínez-García, A.
AU - Polo-López, M. I.
AU - Fernández-Ibáñez, P.
AU - Ferrero, G.
AU - Khan, S.
AU - McGuigan, K. G.
AU - Khan, W.
N1 - Publisher Copyright:
© 2020 Elsevier B.V.
PY - 2020/5/15
Y1 - 2020/5/15
N2 - The efficiency of two large-volume batch solar reactors [Prototype I (140 L) and II (88 L)] in treating rainwater on-site in a local informal settlement and farming community was assessed. Untreated [Tank 1 and Tank 2-(First-flush)] and treated (Prototype I and II) tank water samples were routinely collected from each site and all the measured physico-chemical parameters (e.g. pH and turbidity, amongst others), anions (e.g. sulphate and chloride, amongst others) and cations (e.g. iron and lead, amongst others) were within national and international drinking water guidelines limits. Culture-based analysis indicated that Escherichia coli, total and faecal coliforms, enterococci and heterotrophic bacteria counts exceeded drinking water guideline limits in 61%, 100%, 45%, 24% and 100% of the untreated tank water samples collected from both sites. However, an 8 hour solar exposure treatment for both solar reactors was sufficient to reduce these indicator organisms to within national and international drinking water standards, with the exception of the heterotrophic bacteria which exceeded the drinking water standard limit in 43% of the samples treated with the Prototype I reactor (1 log reduction). Molecular viability analysis subsequently indicated that mean overall reductions of 75% and 74% were obtained for the analysed indicator organisms (E. coli and enterococci spp.) and opportunistic pathogens (Klebsiella spp., Legionella spp., Pseudomonas spp., Salmonella spp. and Cryptosporidium spp. oocysts) in the Prototype I and II solar reactors, respectively. The large-volume batch solar reactor prototypes could thus effectively provide four (88 L Prototype II) to seven (144 L Prototype I) people on a daily basis with the basic water requirement for human activities (20 L). Additionally, a generic Water Safety Plan was developed to aid practitioners in identifying risks and implement remedial actions in this type of installation in order to ensure the safety of the treated water.
AB - The efficiency of two large-volume batch solar reactors [Prototype I (140 L) and II (88 L)] in treating rainwater on-site in a local informal settlement and farming community was assessed. Untreated [Tank 1 and Tank 2-(First-flush)] and treated (Prototype I and II) tank water samples were routinely collected from each site and all the measured physico-chemical parameters (e.g. pH and turbidity, amongst others), anions (e.g. sulphate and chloride, amongst others) and cations (e.g. iron and lead, amongst others) were within national and international drinking water guidelines limits. Culture-based analysis indicated that Escherichia coli, total and faecal coliforms, enterococci and heterotrophic bacteria counts exceeded drinking water guideline limits in 61%, 100%, 45%, 24% and 100% of the untreated tank water samples collected from both sites. However, an 8 hour solar exposure treatment for both solar reactors was sufficient to reduce these indicator organisms to within national and international drinking water standards, with the exception of the heterotrophic bacteria which exceeded the drinking water standard limit in 43% of the samples treated with the Prototype I reactor (1 log reduction). Molecular viability analysis subsequently indicated that mean overall reductions of 75% and 74% were obtained for the analysed indicator organisms (E. coli and enterococci spp.) and opportunistic pathogens (Klebsiella spp., Legionella spp., Pseudomonas spp., Salmonella spp. and Cryptosporidium spp. oocysts) in the Prototype I and II solar reactors, respectively. The large-volume batch solar reactor prototypes could thus effectively provide four (88 L Prototype II) to seven (144 L Prototype I) people on a daily basis with the basic water requirement for human activities (20 L). Additionally, a generic Water Safety Plan was developed to aid practitioners in identifying risks and implement remedial actions in this type of installation in order to ensure the safety of the treated water.
KW - EMA-qPCR
KW - Large-volume SODIS reactors
KW - Rainwater harvesting
KW - Rainwater quality
KW - Water scarcity
UR - http://www.scopus.com/inward/record.url?scp=85079332194&partnerID=8YFLogxK
U2 - 10.1016/j.scitotenv.2020.137223
DO - 10.1016/j.scitotenv.2020.137223
M3 - Article
C2 - 32062239
AN - SCOPUS:85079332194
SN - 0048-9697
VL - 717
JO - Science of the Total Environment
JF - Science of the Total Environment
M1 - 137223
ER -