TY - JOUR
T1 - Unveiling the Collaborative Strategy and Synergistic Effects of Pd/V2O5-fAC towards Glycerol Electrooxidation
AU - Matthews, Thabo
AU - Chabalala, Makhaokane Paulina
AU - Mbokazi, Siyabonga Patrick
AU - Dolla, Tarekegn Heliso
AU - Mugadza, Kudzai
AU - Mashola, Tebogo Abigail
AU - Zikhali, Memory
AU - Gwebu, Surprise Sandile
AU - Carleschi, Emanuela
AU - Doyle, Bryan Patrick
AU - Maxakato, Nobanathi Wendy
N1 - Publisher Copyright:
© 2023 The Authors. ChemCatChem published by Wiley-VCH GmbH.
PY - 2023/11/22
Y1 - 2023/11/22
N2 - A series of Pd nanoparticles supported on V2O5 immobilized on functionalized carbon, % Pd (1, 3, and 5) and % V2O5 (10, 20, and 30), were prepared by sodium borohydride-assisted microwave polyol synthesis for glycerol oxidation reaction (GlyOR) in an alkaline medium. Electrocatalysts loading, temperature, V2O5 immobilization, and their synergistic effect on the electrocatalytic performance are systematically studied. The electrocatalysts′ morphology and electronic properties were investigated using X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, Transmission electron microscopy, and X-ray photoelectron spectroscopy. A significantly improved GlyOR is observed with increased V2O5 content and Pd percentage. The 5 %Pd/30 %V2O5-fAC showed the highest mass activity of 2157.3 mA. mgPd−1, a more negative onset potential of 0.62 VRHE, versus the commercial equivalent, and possessed high stability and durability. The increase in electrocatalytic activity is attributed to the effective immobilization of V2O5 on fAC efficient synergism between Pd and V2O5, strong metal support interaction (SMSI), and great exposure of the electroactive sites. The results herein contribute significantly to the understanding of the physicochemical and electrochemical effects of metal oxide immobilization, microwave irradiation, % Pd/% Metal oxide optimization, and SMSI on metal oxide-carbon hybrid electrocatalysts for GlyOR, opening new avenues for fabricating high-performance direct alkaline glycerol fuel cells.
AB - A series of Pd nanoparticles supported on V2O5 immobilized on functionalized carbon, % Pd (1, 3, and 5) and % V2O5 (10, 20, and 30), were prepared by sodium borohydride-assisted microwave polyol synthesis for glycerol oxidation reaction (GlyOR) in an alkaline medium. Electrocatalysts loading, temperature, V2O5 immobilization, and their synergistic effect on the electrocatalytic performance are systematically studied. The electrocatalysts′ morphology and electronic properties were investigated using X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, Transmission electron microscopy, and X-ray photoelectron spectroscopy. A significantly improved GlyOR is observed with increased V2O5 content and Pd percentage. The 5 %Pd/30 %V2O5-fAC showed the highest mass activity of 2157.3 mA. mgPd−1, a more negative onset potential of 0.62 VRHE, versus the commercial equivalent, and possessed high stability and durability. The increase in electrocatalytic activity is attributed to the effective immobilization of V2O5 on fAC efficient synergism between Pd and V2O5, strong metal support interaction (SMSI), and great exposure of the electroactive sites. The results herein contribute significantly to the understanding of the physicochemical and electrochemical effects of metal oxide immobilization, microwave irradiation, % Pd/% Metal oxide optimization, and SMSI on metal oxide-carbon hybrid electrocatalysts for GlyOR, opening new avenues for fabricating high-performance direct alkaline glycerol fuel cells.
KW - electrocatalytic performance
KW - electronic properties
KW - fuel cell
KW - glycerol oxidation reaction
KW - nanoparticles
UR - http://www.scopus.com/inward/record.url?scp=85175373483&partnerID=8YFLogxK
U2 - 10.1002/cctc.202301044
DO - 10.1002/cctc.202301044
M3 - Article
AN - SCOPUS:85175373483
SN - 1867-3880
VL - 15
JO - ChemCatChem
JF - ChemCatChem
IS - 22
M1 - e202301044
ER -