Unraveling the Bürgi-Dunitz Angle with Precision: The Power of a Two-Dimensional Energy Decomposition Analysis

Israel Fernández, F. Matthias Bickelhaupt, Dennis Svatunek

Research output: Contribution to journalArticlepeer-review

12 Citations (Scopus)

Abstract

Understanding the geometrical preferences in chemical reactions is crucial for advancing the field of organic chemistry and improving synthetic strategies. One such preference, the Bürgi-Dunitz angle, is central to nucleophilic addition reactions involving carbonyl groups. This study successfully employs a novel two-dimensional Distortion-Interaction/Activation-Strain Model in combination with a two-dimensional Energy Decomposition Analysis to investigate the origins of the Bürgi-Dunitz angle in the addition reaction of CN- to (CH3)2C═O. We constructed a 2D potential energy surface defined by the distance between the nucleophile and carbonylic carbon atom and by the attack angle, followed by an in-depth exploration of energy components, including strain and interaction energy. Our analysis reveals that the Bürgi-Dunitz angle emerges from a delicate balance between two key factors: strain energy and interaction energy. High strain energy, as a result of the carbonyl compound distorting to avoid Pauli repulsion, is encountered at high angles, thus setting the upper bound. On the other hand, interaction energy is shaped by a dominant Pauli repulsion when the angles are lower. This work emphasizes the value of the 2D Energy Decomposition Analysis as a refined tool, offering both quantitative and qualitative insights into chemical reactivity and selectivity.

Original languageEnglish
Pages (from-to)7300-7306
Number of pages7
JournalJournal of Chemical Theory and Computation
Volume19
Issue number20
DOIs
Publication statusPublished - 24 Oct 2023

ASJC Scopus subject areas

  • Computer Science Applications
  • Physical and Theoretical Chemistry

Fingerprint

Dive into the research topics of 'Unraveling the Bürgi-Dunitz Angle with Precision: The Power of a Two-Dimensional Energy Decomposition Analysis'. Together they form a unique fingerprint.

Cite this