Unique animal identification using deep transfer learning for data fusion in siamese networks

T. L. Van Zyl, M. Woolway, B. Engelbrecht

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

14 Citations (Scopus)

Abstract

The unique automated identification of animals of various species is a pressing challenge ecologically, environmentally and economically. A broader question relates to how one might exploit the somewhat more mature technologies and techniques used within human visual biometrics to automate this same task for other species. One specific technique is the use of region proposal networks and deep transfer learning in siamese networks for individual animal identification. We report that although it is relatively easy to achieve state of the art performance in uniquely identifying individuals for the easy target of zebras, trying to use the same pipeline to obtain useable, top-10> 85%, results for a more challenging species such as nyala is still an open research problem. We argue that uniquely identifying individuals such as nyala who actively try to disguise themselves in their environments require improved few-shot learning techniques and perhaps more data than the current open dataset we have provided to stimulate this area of research.

Original languageEnglish
Title of host publicationProceedings of 2020 23rd International Conference on Information Fusion, FUSION 2020
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9780578647098
DOIs
Publication statusPublished - Jul 2020
Externally publishedYes
Event23rd International Conference on Information Fusion, FUSION 2020 - Virtual, Pretoria, South Africa
Duration: 6 Jul 20209 Jul 2020

Publication series

NameProceedings of 2020 23rd International Conference on Information Fusion, FUSION 2020

Conference

Conference23rd International Conference on Information Fusion, FUSION 2020
Country/TerritorySouth Africa
CityVirtual, Pretoria
Period6/07/209/07/20

Keywords

  • Biometrics
  • Ecology
  • Siamese Networks
  • Similarity Learning

ASJC Scopus subject areas

  • Computer Vision and Pattern Recognition
  • Information Systems
  • Information Systems and Management
  • Instrumentation

Fingerprint

Dive into the research topics of 'Unique animal identification using deep transfer learning for data fusion in siamese networks'. Together they form a unique fingerprint.

Cite this