Abstract
Let H=(V,E) be a hypergraph with vertex set V and edge set E of order nH=V and size mH=E. A transversal in H is a subset of vertices in H that has a nonempty intersection with every edge of H. The transversal number (H) of H is the minimum size of a transversal in H. A dominating set in H is a subset of vertices DV such that for every vertex vVD there exists an edge eE for which ve and eD. The domination number γ(H) is the minimum cardinality of a dominating set in H. A hypergraph H is k-uniform if every edge of H has size k. We establish the following relationship between the transversal number and the domination number of uniform hypergraphs. For any two nonnegative reals a and b and for every integer k3 the equality supH∈Hkγ(H)/(anH+bmH)=supH∈Hk-1(H)/(anH+(a+b)mH) holds, where Hk denotes the class of all k-uniform hypergraphs containing no isolated vertices. As a consequence of this result, we establish upper bounds on the domination number of a k-uniform hypergraph with minimum degree at least 1. In particular, we show that if k≥3, then γ(H)(nH+⌊k-3/2⌋mH)/⌊3(k-1)/2⌋ for all H∈Hk, and this bound is sharp. More generally, for k=2 and k=3 we prove that all the essential upper bounds can be written in the unified form γ(H)≤(anH+bmH)/(ak+b) for constants b0 and a>-b/k.
Original language | English |
---|---|
Pages (from-to) | 62-71 |
Number of pages | 10 |
Journal | European Journal of Combinatorics |
Volume | 33 |
Issue number | 1 |
DOIs | |
Publication status | Published - Jan 2012 |
ASJC Scopus subject areas
- Discrete Mathematics and Combinatorics