Abstract
We develop a novel numerical scheme for the simulation of dissipative quantum dynamics, following from two-body Lindblad master equations. It exactly preserves the trace of the density matrix and shows only mild deviations from hermiticity and positivity, which are the defining properties of the continuum Lindblad dynamics. The central ingredient is a new spatial difference operator, which not only fulfills the summation by parts (SBP) property, but also implements a continuum reparametrization property. Using the time evolution of a heavy-quark anti-quark bound state in a hot thermal medium as an explicit example, we show how the reparametrization neutral summation-by-parts (RN-SBP) operator enables an accurate simulation of the full dissipative dynamics of this open quantum system.
Original language | English |
---|---|
Article number | 109917 |
Journal | Journal of Computational Physics |
Volume | 425 |
DOIs | |
Publication status | Published - 15 Jan 2021 |
Keywords
- Dissipative systems
- Initial boundary value problems
- Mimetic operator
- Open quantum systems
- Summation-by-parts operators
- Time integration
ASJC Scopus subject areas
- Numerical Analysis
- Modeling and Simulation
- Physics and Astronomy (miscellaneous)
- General Physics and Astronomy
- Computer Science Applications
- Computational Mathematics
- Applied Mathematics