TY - JOUR
T1 - Trace element and metal sequestration in vitellaria and sclerites, and reactive oxygen intermediates in a freshwater monogenean, Paradiplozoon ichthyoxanthon
AU - Gilbert, Beric M.
AU - Avenant-Oldewage, Annemariè
N1 - Publisher Copyright:
© 2017 Gilbert, Avenant-Oldewage. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2017/5
Y1 - 2017/5
N2 - Exposure to metals and other trace elements negatively affects infection dynamics of monogeneans, including diplozoids, but, physiological mechanisms linked to exposure have yet to be documented. In this study sequestration of trace elements and reactive oxygen intermediate production in the monogenean, Paradiplozoon ichthyoxanthon, was demonstrated. During dissection of host fish, Labeobarbus aeneus, the gills were excised and assessed for P. ichthyoxanthon, which were removed and frozen for fluorescence microscopy or fixed for transmission electron microscopy. Trace elements were sequestered in the vitellaria and sclerites in P. ichthyoxanthon, and the presence of reactive oxygen intermediates was observed predominantly in the tegument of the parasite. Trace elements and metals identified and ranked according to weight percentages (wt%) in the vitellaria were Cu > C > Au > O > Cr > Fe > Si while for the sclerites C > Cu > O > Au > Fe > Cr > Si were identified. For most element detected, readings were higher in the vitellaria than the sclerites, except for C and O which were higher in sclerites. Specifically for metals, all levels detected in the vitellaria were greater than in sclerites. Based on the proportion of trace elements present in the vitellaria and sclerites it appears that most trace elements including metals were sequestered in the vitellaria. The results of reactive oxygen intermediate production in the tegument of the parasite suggests either trace element accumulation takes place across the tegument or results from the action of the host's immune response on the parasite. The results serve as the first demonstration of trace element sequestration and reactive oxygen intermediates in a freshwater monogenean parasite.
AB - Exposure to metals and other trace elements negatively affects infection dynamics of monogeneans, including diplozoids, but, physiological mechanisms linked to exposure have yet to be documented. In this study sequestration of trace elements and reactive oxygen intermediate production in the monogenean, Paradiplozoon ichthyoxanthon, was demonstrated. During dissection of host fish, Labeobarbus aeneus, the gills were excised and assessed for P. ichthyoxanthon, which were removed and frozen for fluorescence microscopy or fixed for transmission electron microscopy. Trace elements were sequestered in the vitellaria and sclerites in P. ichthyoxanthon, and the presence of reactive oxygen intermediates was observed predominantly in the tegument of the parasite. Trace elements and metals identified and ranked according to weight percentages (wt%) in the vitellaria were Cu > C > Au > O > Cr > Fe > Si while for the sclerites C > Cu > O > Au > Fe > Cr > Si were identified. For most element detected, readings were higher in the vitellaria than the sclerites, except for C and O which were higher in sclerites. Specifically for metals, all levels detected in the vitellaria were greater than in sclerites. Based on the proportion of trace elements present in the vitellaria and sclerites it appears that most trace elements including metals were sequestered in the vitellaria. The results of reactive oxygen intermediate production in the tegument of the parasite suggests either trace element accumulation takes place across the tegument or results from the action of the host's immune response on the parasite. The results serve as the first demonstration of trace element sequestration and reactive oxygen intermediates in a freshwater monogenean parasite.
UR - http://www.scopus.com/inward/record.url?scp=85019456703&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0177558
DO - 10.1371/journal.pone.0177558
M3 - Article
C2 - 28498876
AN - SCOPUS:85019456703
SN - 1932-6203
VL - 12
JO - PLoS ONE
JF - PLoS ONE
IS - 5
M1 - e0177558
ER -