Tomek Link and SMOTE Approaches for Machine Fault Classification with an Imbalanced Dataset

Elsie Fezeka Swana, Wesley Doorsamy, Pitshou Bokoro

Research output: Contribution to journalArticlepeer-review

57 Citations (Scopus)

Abstract

Data-driven methods have prominently featured in the progressive research and development of modern condition monitoring systems for electrical machines. These methods have the advantage of simplicity when it comes to the implementation of effective fault detection and diagnostic systems. Despite their many advantages, the practical implementation of data-driven approaches still faces challenges such as data imbalance. The lack of sufficient and reliable labeled fault data from machines in the field often poses a challenge in developing accurate supervised learning-based condition monitoring systems. This research investigates the use of a Naïve Bayes classifier, support vector machine, and k-nearest neighbors together with synthetic minority oversampling technique, Tomek link, and the combination of these two resampling techniques for fault classification with simulation and experimental imbalanced data. A comparative analysis of these techniques is conducted for different imbalanced data cases to determine the suitability thereof for condition monitoring on a wound-rotor induction generator. The precision, recall, and f1-score matrices are applied for performance evaluation. The results indicate that the technique combining the synthetic minority oversampling technique with the Tomek link provides the best performance across all tested classifiers. The k-nearest neighbors, together with this combination resampling technique yielded the most accurate classification results. This research is of interest to researchers and practitioners working in the area of condition monitoring in electrical machines, and the findings and presented approach of the comparative analysis will assist with the selection of the most suitable technique for handling imbalanced fault data. This is especially important in the practice of condition monitoring on electrical rotating machines, where fault data are very limited.

Original languageEnglish
Article number3246
JournalSensors
Volume22
Issue number9
DOIs
Publication statusPublished - 1 May 2022

Keywords

  • Bayesian classification
  • Tomek link
  • imbalanced data
  • k-nearest neighbor
  • support vector machine
  • synthetic minority over-sampling sampling
  • wound-rotor induction generator

ASJC Scopus subject areas

  • Analytical Chemistry
  • Information Systems
  • Atomic and Molecular Physics, and Optics
  • Biochemistry
  • Instrumentation
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Tomek Link and SMOTE Approaches for Machine Fault Classification with an Imbalanced Dataset'. Together they form a unique fingerprint.

Cite this