TY - JOUR
T1 - The miaskitic-to-agpaitic transition in peralkaline nepheline syenite (white foyaite) from the Pilanesberg Complex, South Africa
AU - Andersen, Tom
AU - Elburg, Marlina
AU - Erambert, Muriel
N1 - Publisher Copyright:
© 2016 Elsevier B.V.
PY - 2017/4/20
Y1 - 2017/4/20
N2 - The Mesoproterozoic Pilanesberg Complex, South Africa, is built up by several distinct, ring-shaped intrusions of syenite and peralkaline nepheline syenite. A mildly peralkaline ((Na + K) / Al = 1.04–1.09), medium-to coarse grained nepheline syenite makes up the outermost ring in the southwestern part of the complex (“Matooster type white foyaite”). In this rock, mafic silicate minerals (amphibole, biotite, aegirine) and Ti-bearing minerals (ilmenite, astrophyllite, aenigmatite, lorenzenite, bafertisite, jinshajiangite) are interstitial to feldspar and nepheline, and define a series of mineral assemblages reflecting a change from a miaskitic crystallization regime (with Na-Ca amphibole, titanite and ilmenite) to increasingly agpaitic conditions (with arfvedsonite, aegirine, astrophyllite, aenigmatite, lorenzenite). The main driving force behind the evolution was an increase in peralkalinity of the trapped liquid, mainly by adcumulus growth of alkali feldspar and nepheline, which in the later stages of evolution was combined with increases in oxygen fugacity and water activity. Unlike in most other agpaitic rock complexes, Zr remained compatible in aegirine (and to some extent in amphibole) almost to the end of the process, when a hydrous zirconium silicate mineral (hilairite) crystallized as the only mineral in the rock having essential zirconium. The presence of minerals such as hilairite, bafertisite, jinshajiangite and a Na-REE-Sr rich apatite group mineral (fluorcaphite ?) in the latest assemblages suggests that the last remaining interstitial melt or fluid approached a hyperagpaitic composition. The isolated melt pockets in the Pilanesberg white foyaite follow a pattern of evolution that can be seen as a miniature analogue of the fractional crystallization processes controlling magma evolution in large, alkaline igneous rock complexes.
AB - The Mesoproterozoic Pilanesberg Complex, South Africa, is built up by several distinct, ring-shaped intrusions of syenite and peralkaline nepheline syenite. A mildly peralkaline ((Na + K) / Al = 1.04–1.09), medium-to coarse grained nepheline syenite makes up the outermost ring in the southwestern part of the complex (“Matooster type white foyaite”). In this rock, mafic silicate minerals (amphibole, biotite, aegirine) and Ti-bearing minerals (ilmenite, astrophyllite, aenigmatite, lorenzenite, bafertisite, jinshajiangite) are interstitial to feldspar and nepheline, and define a series of mineral assemblages reflecting a change from a miaskitic crystallization regime (with Na-Ca amphibole, titanite and ilmenite) to increasingly agpaitic conditions (with arfvedsonite, aegirine, astrophyllite, aenigmatite, lorenzenite). The main driving force behind the evolution was an increase in peralkalinity of the trapped liquid, mainly by adcumulus growth of alkali feldspar and nepheline, which in the later stages of evolution was combined with increases in oxygen fugacity and water activity. Unlike in most other agpaitic rock complexes, Zr remained compatible in aegirine (and to some extent in amphibole) almost to the end of the process, when a hydrous zirconium silicate mineral (hilairite) crystallized as the only mineral in the rock having essential zirconium. The presence of minerals such as hilairite, bafertisite, jinshajiangite and a Na-REE-Sr rich apatite group mineral (fluorcaphite ?) in the latest assemblages suggests that the last remaining interstitial melt or fluid approached a hyperagpaitic composition. The isolated melt pockets in the Pilanesberg white foyaite follow a pattern of evolution that can be seen as a miniature analogue of the fractional crystallization processes controlling magma evolution in large, alkaline igneous rock complexes.
KW - Aenigmatite
KW - Agpaitic rocks
KW - Astrophyllite
KW - Lorenzenite
KW - Nepheline syenite
KW - Peralkaline rocks
UR - http://www.scopus.com/inward/record.url?scp=84995477579&partnerID=8YFLogxK
U2 - 10.1016/j.chemgeo.2016.08.020
DO - 10.1016/j.chemgeo.2016.08.020
M3 - Article
AN - SCOPUS:84995477579
SN - 0009-2541
VL - 455
SP - 166
EP - 181
JO - Chemical Geology
JF - Chemical Geology
ER -