Abstract
We study a game played on a graph by two players, named Maximizer and Minimizer. Each round two new vertices are chosen; first Maximizer chooses a vertex u that has at least one unchosen neighbor and then Minimizer chooses a neighbor of u. This process eventually produces a maximal matching of the graph. Maximizer tries to maximize the number of edges chosen, while Minimizer tries to minimize it. The matcher number αg′(G) of a graph G is the number of edges chosen when both players play optimally. In this paper it is proved that αg′(G)≥[Formula presented]α′(G), where α′(G) denotes the matching number of graph G, and this bound is tight. Further, if G is bipartite, then αg′(G)=α′(G). We also provide some results on graphs of large odd girth and on dense graphs.
Original language | English |
---|---|
Pages (from-to) | 82-88 |
Number of pages | 7 |
Journal | Discrete Applied Mathematics |
Volume | 237 |
DOIs | |
Publication status | Published - 11 Mar 2018 |
Keywords
- Matcher game
- Matching
ASJC Scopus subject areas
- Discrete Mathematics and Combinatorics
- Applied Mathematics