TY - JOUR
T1 - The magmatic and magmatic-hydrothermal evolution of felsic igneous rocks as seen through Nb-Ta geochemical fractionation, with implications for the origins of rare-metal mineralizations
AU - Ballouard, Christophe
AU - Massuyeau, Malcolm
AU - Elburg, Marlina A.
AU - Tappe, Sebastian
AU - Viljoen, Fanus
AU - Brandenburg, Jean Tristan
N1 - Publisher Copyright:
© 2020 Elsevier B.V.
PY - 2020/4
Y1 - 2020/4
N2 - Despite Nb and Ta being considered as ‘geochemical twins’, most Ta mineral deposits are associated with muscovite-bearing peraluminous granites and related pegmatites (MPG), whereas significant Nb deposits are related to peralkaline to metaluminous A1-type granites and syenites as well as nepheline syenites. Metaluminous to peraluminous A2-type granites and syenites have a lower potential for rare-metal mineralization. The Nb/Ta ratios are highly variable within each type of rare-metal-enriched felsic igneous suite and causes of the Nb-Ta geochemical fractionation remain poorly understood. Our compilation of whole-rock geochemical data indicates that Nb/Ta ratios generally anticorrelate with Ta, and at given Ta contents the Nb/Ta ratios increase from MPG through A2-type to A1-type igneous suites. However, the Nb-Ta compositions of A1-type and silica-undersaturated felsic magmatic rocks are indistinguishable. New regression models to estimate the mineral/melt partition coefficients DNb and DTa indicate that fractional crystallization of biotite and ilmenite significantly decreases Nb/Ta, but an extreme degree of fractional crystallization is needed to explain the observed range of Nb-Ta variations in rare-metal-enriched igneous suites. Importantly, metasomatic rocks formed by the alteration of igneous suites and their country-rocks are commonly highly enriched in Ta and Nb. Their low Nb/Ta ratios suggest that magmatic-hydrothermal processes involving fluids and hydrosaline melts also play a critical role in Nb-Ta geochemical fractionation and HFSE enrichment in general. We show that the Nb-Ta compositions of the primitive end-members of rare-metal-enriched felsic igneous suites fingerprint the nature and evolution of their sources including metasomatic processes in the Earth's crust and upper mantle.
AB - Despite Nb and Ta being considered as ‘geochemical twins’, most Ta mineral deposits are associated with muscovite-bearing peraluminous granites and related pegmatites (MPG), whereas significant Nb deposits are related to peralkaline to metaluminous A1-type granites and syenites as well as nepheline syenites. Metaluminous to peraluminous A2-type granites and syenites have a lower potential for rare-metal mineralization. The Nb/Ta ratios are highly variable within each type of rare-metal-enriched felsic igneous suite and causes of the Nb-Ta geochemical fractionation remain poorly understood. Our compilation of whole-rock geochemical data indicates that Nb/Ta ratios generally anticorrelate with Ta, and at given Ta contents the Nb/Ta ratios increase from MPG through A2-type to A1-type igneous suites. However, the Nb-Ta compositions of A1-type and silica-undersaturated felsic magmatic rocks are indistinguishable. New regression models to estimate the mineral/melt partition coefficients DNb and DTa indicate that fractional crystallization of biotite and ilmenite significantly decreases Nb/Ta, but an extreme degree of fractional crystallization is needed to explain the observed range of Nb-Ta variations in rare-metal-enriched igneous suites. Importantly, metasomatic rocks formed by the alteration of igneous suites and their country-rocks are commonly highly enriched in Ta and Nb. Their low Nb/Ta ratios suggest that magmatic-hydrothermal processes involving fluids and hydrosaline melts also play a critical role in Nb-Ta geochemical fractionation and HFSE enrichment in general. We show that the Nb-Ta compositions of the primitive end-members of rare-metal-enriched felsic igneous suites fingerprint the nature and evolution of their sources including metasomatic processes in the Earth's crust and upper mantle.
KW - A-type and peraluminous granites
KW - Fractional crystallization
KW - Magmatic-hydrothermal transition
KW - Mineral/melt partition coefficients
KW - Niobium and tantalum
KW - Peralkaline complexes
UR - http://www.scopus.com/inward/record.url?scp=85079589617&partnerID=8YFLogxK
U2 - 10.1016/j.earscirev.2020.103115
DO - 10.1016/j.earscirev.2020.103115
M3 - Review article
AN - SCOPUS:85079589617
SN - 0012-8252
VL - 203
JO - Earth-Science Reviews
JF - Earth-Science Reviews
M1 - 103115
ER -