Abstract
We report the photoelectrochemical application of a visible light active FTO-Cu2O/Ag3PO4 photoanode for the abatement of sulfamethoxazole in water. The as-synthesised photoanodes were characterised using XRD, field emission SEM, EDX, diffuse reflectance UV–vis, impedance spectroscopy and chronoamperometry. The results obtained confirmed a successful formation of p-n heterojunction at the Cu2O/Ag3PO4 interface. The highest photocurrent response of 0.62 mAcm−2 was obtained for the composite photoanode which was four times higher than pure Cu2O and about three times higher than pristine Ag3PO4. The photoanode gave 67% removal efficiency within 2 h upon its photoelectrochemical application in the degradation of sulfamethoxazole with 1.5 V bias potential at pH 6.2. The FTO-Cu2O/Ag3PO4 electrode was also applied in the treatment of a cocktail of synthetic organics containing sulfamethoxazole and orange II dye. The photogenerated holes was found to be the major oxidant and the photoanodes was stable and reusable.
Original language | English |
---|---|
Article number | 129231 |
Journal | Chemosphere |
Volume | 266 |
DOIs | |
Publication status | Published - Mar 2021 |
Keywords
- Photoanode
- Photoelectrochemical degradation
- Silver phosphate
- Sulfamethoxazole
- copper(I) oxide
- p-n heterojunctions
ASJC Scopus subject areas
- Environmental Engineering
- General Chemistry
- Environmental Chemistry
- Pollution
- Public Health, Environmental and Occupational Health
- Health, Toxicology and Mutagenesis