The activation strain model and molecular orbital theory

Lando P. Wolters, F. Matthias Bickelhaupt

Research output: Contribution to journalReview articlepeer-review

346 Citations (Scopus)

Abstract

The activation strain model is a powerful tool for understanding reactivity, or inertness, of molecular species. This is done by relating the relative energy of a molecular complex along the reaction energy profile to the structural rigidity of the reactants and the strength of their mutual interactions: ΔE(ζ)=ΔEstrain(ζ)+ΔEint(ζ). We provide a detailed discussion of the model, and elaborate on its strong connection with molecular orbital theory. Using these approaches, a causal relationship is revealed between the properties of the reactants and their reactivity, e.g., reaction barriers and plausible reaction mechanisms. This methodology may reveal intriguing parallels between completely different types of chemical transformations. Thus, the activation strain model constitutes a unifying framework that furthers the development of cross-disciplinary concepts throughout various fields of chemistry. We illustrate the activation strain model in action with selected examples from literature. These examples demonstrate how the methodology is applied to different research questions, how results are interpreted, and how insights into one chemical phenomenon can lead to an improved understanding of another, seemingly completely different chemical process.

Original languageEnglish
Pages (from-to)324-343
Number of pages20
JournalWiley Interdisciplinary Reviews: Computational Molecular Science
Volume5
Issue number4
DOIs
Publication statusPublished - 1 Jul 2015
Externally publishedYes

ASJC Scopus subject areas

  • Biochemistry
  • Computer Science Applications
  • Physical and Theoretical Chemistry
  • Computational Mathematics
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'The activation strain model and molecular orbital theory'. Together they form a unique fingerprint.

Cite this