Temporal analysis of changes in anthropogenic emissions and urban heat islands during covid-19 restrictions in Gauteng province, South Africa

Lerato Shikwambana, Mahlatse Kganyago, Paidamwoyo Mhangara

Research output: Contribution to journalArticlepeer-review

20 Citations (Scopus)

Abstract

Anthropogenic emissions are significant drivers of temperature rises in major urban areas across the globe. Waste heat and exhaust emissions from motor vehicles and industrial combustion cause the warming of cities, resulting in microclimates' changes. Recently, national lockdown regulations restricting movement and socio-economic activities to curb the spread of a novel COVID-19 and the associated deaths have been implemented in various countries worldwide. Consequently, these unprecedented restrictions resulted in reductions in traffic volumes and industrial activities in most urban areas across the world. Thus, it was hypothesised that these reductions in traffic congestion and industrial activities in cities would reduce both air pollutants and thermal radiation. Using multisource data from Sentinel-5P, MERRA-2, and MODIS, this study assessed the short-term trends in emissions and land surface temperature in South Africa's economic hub, i.e., Gauteng Province. Mann-Kendall (MK) and Sequential Mann-Kendall (SQMK) trend analysis were used to characterise trends in CO, SO2, SO4, long-wave radiation (LWR), and land surface temperature (LST) at periods corresponding to various lockdown restrictions. The results showed a significant decline in atmospheric pollutants at Level-5 lockdown restrictions, followed by an abrupt increase as the regulations were eased to Level-4 lockdown. Similarly, LST and surface urban heat island (SUHI) reduced when compared to the previous year. Therefore, the lockdown restrictions provided an experimental scenario in which pollutants could be drastically reduced, thus accentuated the human impact on microclimates.

Original languageEnglish
Article number200437
JournalAerosol and Air Quality Research
Volume21
Issue number9
DOIs
Publication statusPublished - Sept 2021
Externally publishedYes

Keywords

  • COVID-19
  • Emissions
  • Lockdown
  • Nitrogen dioxide
  • Sentinel-5P

ASJC Scopus subject areas

  • Environmental Chemistry
  • Pollution

Fingerprint

Dive into the research topics of 'Temporal analysis of changes in anthropogenic emissions and urban heat islands during covid-19 restrictions in Gauteng province, South Africa'. Together they form a unique fingerprint.

Cite this