Techno-econo-environmental optimal operation of grid-wind-solar electricity generation with hydrogen storage system for domestic scale, case study in Chad

Mehdi Jahangiri, Marcel Hamda Soulouknga, Fatemeh Karimzadeh Bardei, Akbar Alidadi Shamsabadi, Esther T. Akinlabi, Sam M. Sichilalu, Ali Mostafaeipour

Research output: Contribution to journalArticlepeer-review

80 Citations (Scopus)


The rapidly growing of population in the developing countries and their lack of access to electricity, especially in the remote or rural areas, is causing huge challenges for on energy production. Energy is an enabler and a reliable energy supply is critical to sustainable socio-economic development for any nation. Most of Chad's people live in villages with no particular power supply system. Exploiting renewable energies is the only means of fostering development and improving people's welfare. This paper attempts at proposing an energy profile and storage model for Chad in vast remote towns. The paper addresses the key energy gap that is hindering on the development of such systems, it models and assess the potential on electricity generation and using hydrogen as surplus power storage system. A techno-econo-environmental survey on a solar-wind hybrid system in 25 towns in Chad is undertaken using NASA data and HOMER Software. Several hybrid scenarios of energy production and storage is analyzed. The results showed that in the electricity generation scenario, the average total NPC for the studied stations was $ 48164 and the average LCOE was $0.573. The lowest LCOE was related to Aouzou station with 0.507 $/kWh and the highest LCOE was obtained for Bol station with 0.604 $/kWh. In the simultaneous electricity and hydrogen generation scenario, the cheapest hydrogen ($4.695/kg) was produced in the “Grid” scenario, which was the same for all of the stations, with a total NPC of $2413770. The most expensive hydrogen ($4.707/kg) was generated in the “Grid-Wind” scenario and Bol stations with a total NPC of $2420186. The paper develops cost effective models for all hybrid systems combination for both electricity and hydrogen generation across Chad. These findings could help policy makers, investors and other developmental agencies make informed choices on energy access for sustainable development for rural communities in Sub Saharan Africa.

Original languageEnglish
Pages (from-to)28613-28628
Number of pages16
JournalInternational Journal of Hydrogen Energy
Issue number54
Publication statusPublished - 5 Nov 2019


  • Chad
  • Hydrogen storage
  • Remote communities
  • Solar energy
  • Wind energy

ASJC Scopus subject areas

  • Renewable Energy, Sustainability and the Environment
  • Fuel Technology
  • Condensed Matter Physics
  • Energy Engineering and Power Technology


Dive into the research topics of 'Techno-econo-environmental optimal operation of grid-wind-solar electricity generation with hydrogen storage system for domestic scale, case study in Chad'. Together they form a unique fingerprint.

Cite this