System identification in presence of outliers

Chao Yu, Qing Guo Wang, Dan Zhang, Lei Wang, Jiangshuai Huang

Research output: Contribution to journalArticlepeer-review

22 Citations (Scopus)

Abstract

The outlier detection problem for dynamic systems is formulated as a matrix decomposition problem with low rank and sparse matrices, and further recast as a semidefinite programming problem. A fast algorithm is presented to solve the resulting problem while keeping the solution matrix structure and it can greatly reduce the computational cost over the standard interior-point method. The computational burden is further reduced by proper construction of subsets of the raw data without violating low-rank property of the involved matrix. The proposed method can make exact detection of outliers in case of no or little noise in output observations. In case of significant noise, a novel approach based on under-sampling with averaging is developed to denoise while retaining the saliency of outliers, and so-filtered data enables successful outlier detection with the proposed method while the existing filtering methods fail. Use of recovered 'clean' data from the proposed method can give much better parameter estimation compared with that based on the raw data.

Original languageEnglish
Article number7110589
Pages (from-to)1202-1216
Number of pages15
JournalIEEE Transactions on Cybernetics
Volume46
Issue number5
DOIs
Publication statusPublished - May 2016
Externally publishedYes

Keywords

  • Denoising
  • interior-point methods
  • low-rank matrix
  • matrix decomposition
  • outlier detection
  • semidefinite programming (SDP)
  • sparsity
  • system identification

ASJC Scopus subject areas

  • Software
  • Control and Systems Engineering
  • Information Systems
  • Human-Computer Interaction
  • Computer Science Applications
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'System identification in presence of outliers'. Together they form a unique fingerprint.

Cite this