TY - JOUR
T1 - Synthesis and Characterization of MC/TiO2 NPs Nanocomposite for Removal of Pb2+ and Reuse of Spent Adsorbent for Blood Fingerprint Detection
AU - Nthwane, Yvonne Boitumelo
AU - Fouda-Mbanga, Bienvenu Gael
AU - Thwala, Melusi
AU - Pillay, Kriveshini
N1 - Publisher Copyright:
© 2023 The Authors. Published by American Chemical Society
PY - 2023/8/1
Y1 - 2023/8/1
N2 - The removal of toxic heavy metals from wastewater through the use of novel adsorbents is expensive. The challenge arises after the heavy metal is removed by the adsorbent, and the fate of the adsorbent is not taken care of. This may create secondary pollution. The study aimed to prepare mesoporous carbon (MC) from macadamia nutshells coated with titanium dioxide nanoparticles (TiO2 NPs) using a hydrothermal method to remove Pb2+ and to test the effectiveness of reusing the lead-loaded spent adsorbent (Pb2+-MC/TiO2 NP nanocomposite) in blood fingerprint detection. The samples were characterized using SEM, which confirmed spherical and flower-like structures of the nanomaterials, whereas TEM confirmed a particle size of 5 nm. The presence of functional groups such as C and Ti and a crystalline size of 4 nm were confirmed by FTIR and XRD, respectively. The surface area of 1283.822 m2/g for the MC/TiO2 NP nanocomposite was examined by BET. The removal of Pb2+ at pH 4 and the dosage of 1.6 g/L with the highest percentage removal of 98% were analyzed by ICP-OES. The Langmuir isotherm model best fit the experimental data, and the maximum adsorption capacity of the MC/TiO2 NP nanocomposite was 168.919 mg/g. The adsorption followed the pseudo-second-order kinetic model. The ΔH° (−54.783) represented the exothermic nature, and ΔG° (−0.133 to −4.743) indicated that the adsorption process is spontaneous. In the blood fingerprint detection, the fingerprint details were more visible after applying the Pb2+-MC/TiO2 NP nanocomposite than before the application. The reuse application experiments showed that the Pb2+-MC/TiO2 NP nanocomposite might be a useful alternative material for blood fingerprint enhancement when applied on nonporous surfaces, eliminating secondary pollution.
AB - The removal of toxic heavy metals from wastewater through the use of novel adsorbents is expensive. The challenge arises after the heavy metal is removed by the adsorbent, and the fate of the adsorbent is not taken care of. This may create secondary pollution. The study aimed to prepare mesoporous carbon (MC) from macadamia nutshells coated with titanium dioxide nanoparticles (TiO2 NPs) using a hydrothermal method to remove Pb2+ and to test the effectiveness of reusing the lead-loaded spent adsorbent (Pb2+-MC/TiO2 NP nanocomposite) in blood fingerprint detection. The samples were characterized using SEM, which confirmed spherical and flower-like structures of the nanomaterials, whereas TEM confirmed a particle size of 5 nm. The presence of functional groups such as C and Ti and a crystalline size of 4 nm were confirmed by FTIR and XRD, respectively. The surface area of 1283.822 m2/g for the MC/TiO2 NP nanocomposite was examined by BET. The removal of Pb2+ at pH 4 and the dosage of 1.6 g/L with the highest percentage removal of 98% were analyzed by ICP-OES. The Langmuir isotherm model best fit the experimental data, and the maximum adsorption capacity of the MC/TiO2 NP nanocomposite was 168.919 mg/g. The adsorption followed the pseudo-second-order kinetic model. The ΔH° (−54.783) represented the exothermic nature, and ΔG° (−0.133 to −4.743) indicated that the adsorption process is spontaneous. In the blood fingerprint detection, the fingerprint details were more visible after applying the Pb2+-MC/TiO2 NP nanocomposite than before the application. The reuse application experiments showed that the Pb2+-MC/TiO2 NP nanocomposite might be a useful alternative material for blood fingerprint enhancement when applied on nonporous surfaces, eliminating secondary pollution.
UR - http://www.scopus.com/inward/record.url?scp=85166752372&partnerID=8YFLogxK
U2 - 10.1021/acsomega.2c05765
DO - 10.1021/acsomega.2c05765
M3 - Article
AN - SCOPUS:85166752372
SN - 2470-1343
VL - 8
SP - 26725
EP - 26738
JO - ACS Omega
JF - ACS Omega
IS - 30
ER -