Sustainable one-step synthesis of hierarchical microspheres of PEGylated MoS 2 nanosheets and MoO 3 nanorods: Their cytotoxicity towards lung and breast cancer cells

Research output: Contribution to journalArticlepeer-review

74 Citations (Scopus)

Abstract

Nanotechnology provides an emerging potent alternate mode of cancer therapy. Nanomaterials dispersion or solubility is of particular concern in utilising their full potential applications in biomedical fields. PEGylation of nanomaterials is considered to provide products with stealth properties, and physiological environment with no obvious adverse effects. The purpose of this work was to develop a sustainable one-step method for fabrication of hierarchical microspheres of PEGylated MoS 2 nanosheets using a stoichiometric ratio of Mo(VI) and thiourea. This study further investigated the cytotoxicity of the PEGylated MoS 2 nanosheets towards lung (A549) and breast cancer (MCF-7) cell lines by analysing morphological changes and performing dose-dependent cell proliferation, and cytotoxicity analysis using adenosine 5′-triphosphate (ATP), and lactate dehydrogenase (LDH) assay. For comparison, MoO 3 nanorods were synthesised by simple chemical route and their cytotoxicity towards lung (A549) and breast cancer (MCF-7) cell lines were checked. The findings suggested that PEGylated MoS 2 nanosheets have excellent cytotoxicity towards breast cancer (MCF-7) cell lines, and MoO 3 have better cytotoxicity towards lung (A549) cancer cell lines. This work envisages an accessible foundation for engineering sophisticated biomolecule–MoS 2 nanosheets conjugation due to the defect-rich biocompatible surface, to achieve great versatility, additional functions, and further advances in the biomedical field.

Original languageEnglish
Pages (from-to)8-18
Number of pages11
JournalApplied Surface Science
Volume396
DOIs
Publication statusPublished - 28 Feb 2017

Keywords

  • Cancer cells
  • Cytotoxicity
  • Hierarchical microspheres
  • Hydrothermal synthesis
  • Nanorods
  • Nanosheets

ASJC Scopus subject areas

  • General Chemistry
  • Condensed Matter Physics
  • General Physics and Astronomy
  • Surfaces and Interfaces
  • Surfaces, Coatings and Films

Fingerprint

Dive into the research topics of 'Sustainable one-step synthesis of hierarchical microspheres of PEGylated MoS 2 nanosheets and MoO 3 nanorods: Their cytotoxicity towards lung and breast cancer cells'. Together they form a unique fingerprint.

Cite this