Suppression of burst oscillations in racing motorcycles

Simos A. Evangelou, David J.N. Limebeer, Maria Tomas-Rodriguez

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

5 Citations (Scopus)


Burst oscillations occurring at high speed and under firm acceleration are suppressed with a mechanical steering compensator. Burst instabilities in the subject racing motorcycle are the result of interactions between the wobble and weave modes under high-speed cornering and firm-acceleration conditions. Under accelerating conditions the wobble-mode frequency decreases, while the weave mode frequency increases so that destabilizing interactions occur. The design analysis is based on a time-separation principle, which assumes that bursting occurs on time scales over which speed variations can be neglected. Therefore, under braking and acceleration conditions linear time-invariant models corresponding to constant-speed operation can be utilized in the design process. The inertial influences of braking and acceleration are modelled using d'Alembert-type forces that are applied at the mass centres of each of the model's constituent bodies. The resulting steering compensator is a simple mechanical network that comprises a conventional steering damper in series with a linear spring. This network is a mechanical lag compensator.

Original languageEnglish
Title of host publication2010 49th IEEE Conference on Decision and Control, CDC 2010
PublisherInstitute of Electrical and Electronics Engineers Inc.
Number of pages8
ISBN (Print)9781424477456
Publication statusPublished - 2010
Externally publishedYes
Event49th IEEE Conference on Decision and Control, CDC 2010 - Atlanta, United States
Duration: 15 Dec 201017 Dec 2010

Publication series

NameProceedings of the IEEE Conference on Decision and Control
ISSN (Print)0743-1546
ISSN (Electronic)2576-2370


Conference49th IEEE Conference on Decision and Control, CDC 2010
Country/TerritoryUnited States

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Modeling and Simulation
  • Control and Optimization


Dive into the research topics of 'Suppression of burst oscillations in racing motorcycles'. Together they form a unique fingerprint.

Cite this