Study on fluid-to-fluid modeling of CHF of R134a-water in horizontal helically-coiled tubes

Chang Nian Chen, Ji Tian Han, Li Shao, Wen Wen Chen, Tien Chien Jen

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

The new similarity laws for fluid-to-fluid modeling of critical heat flux (CHF) in horizontal helically-coiled tubes were derived based on the dimensional analysis and similarity theory considering the effect of the geometrical parameters on CHF. A generalized factor Dn was introduced to the new similarity laws, and all the new dimensionless numbers were derived from the classical theorem of Buckingham Π for dimensional analysis. The obtained dimensionless parameter sets were a reasonable extension to Ahmad's compensated distortion model, which may be considered as a special case of the new dimensionless parameter sets when the variable n is equal to unity. Based on the experimental data, the specific similarity numbers were determined for CHF phenomena in horizontal helically-coiled tubes. A new equivalent characteristic parameter De-helix was developed, which could reflect the influence of complex flow channels on the occurrence of CHF. The equivalent characteristic parameter consists of the essential geometrical parameters of tubes and the fluid thermophysical properties. The new fluid-to-fluid modeling methods were proposed for CHF of R134a-water in horizontal helically-coiled tubes, which could be used readily to derive the CHF data of water through the CHF data of R134a at the corresponding experimental conditions.

Original languageEnglish
Title of host publication2010 14th International Heat Transfer Conference, IHTC 14
Pages347-354
Number of pages8
DOIs
Publication statusPublished - 2010
Externally publishedYes
Event2010 14th International Heat Transfer Conference, IHTC 14 - Washington, DC, United States
Duration: 8 Aug 201013 Aug 2010

Publication series

Name2010 14th International Heat Transfer Conference, IHTC 14
Volume1

Conference

Conference2010 14th International Heat Transfer Conference, IHTC 14
Country/TerritoryUnited States
CityWashington, DC
Period8/08/1013/08/10

Keywords

  • Critical heat flux
  • Fluid-to-fluid modeling
  • Horizontal helically-coiled tubes
  • R134a

ASJC Scopus subject areas

  • Fluid Flow and Transfer Processes

Fingerprint

Dive into the research topics of 'Study on fluid-to-fluid modeling of CHF of R134a-water in horizontal helically-coiled tubes'. Together they form a unique fingerprint.

Cite this