Abstract
Prostate cancer that is resistant to castration has been a prominent health challenge in the lives of men, particularly older men. This study looks at the spectroscopic properties, density functional theory (DFT) calculations, and molecular docking of the chemical N-(1H-pyrrol-2-yl) methylene)-4-methylaniline(PMMA) in order to see if it can be used as a chemotherapeutic medication for the treatment of castration-resistant prostate cancer(CRPC). The frontier molecular orbitals (FMO), Fukui reactivity functions, non-linear optics (NLO), and natural bond orbitals (NBO) were investigated further using DFT at the 6–311++G (d, p) with five different functional (B3LYP, B3PW91, ɷB97XD, PBEPBE, and M06–2X) for the investigation of the studied molecular structural properties. The experimental and theoretical vibration analysis of the synthesized molecule employing DFT investigations in different solvents at B3PW91/6–311++G (d, p) were found to be in good agreement. The docking results with three different proteins (4XVE, 1XF0, 5Y8Y) with PMMA showed good binding affinities when compared to the standard drug (Darolutamide) (DLA). The molecular docking results indicated that PMMA have an excellent chemotherapeutic potential for the treatment of CRPC.
Original language | English |
---|---|
Article number | 100091 |
Journal | Chemical Physics Impact |
Volume | 5 |
DOIs | |
Publication status | Published - Dec 2022 |
Keywords
- DFT, Molecular docking
- Methylanaline
- Prostrate cancer
- Structural-benchmarking
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Biophysics
- Atomic and Molecular Physics, and Optics
- Biochemistry
- Materials Science (miscellaneous)
- Condensed Matter Physics
- Physics and Astronomy (miscellaneous)
- Physical and Theoretical Chemistry