TY - JOUR
T1 - Sorptive elimination of ibuprofen using activated biochar
T2 - modelling, non-linear isotherm and kinetic, cost assessment and toxicity analysis
AU - Show, Sumona
AU - Chowdhury, Somnath
AU - Maji, Moumita
AU - Sarkar, Priyanka
AU - Ghosh, Monidipa
AU - Sillanpää, Mika
AU - Halder, Gopinath
N1 - Publisher Copyright:
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
PY - 2024/5
Y1 - 2024/5
N2 - The prevalence of numerous pharmaceuticals in sewage effluent discharges has significantly decreased the life and quality of water bodies. Ibuprofen (IBP), an acidic non-steroid drug, is one such pharmaceutical being widely used for anti-inflammatory properties. The present work investigated the sorption efficiency of base activated biochar synthesized from green waste Tamarindus indica seeds for removing IBP from simulated water. The biochar was instrumentally analyzed by Fourier transform infrared spectroscopy (FTIR), energy-dispersive X-ray analysis (EDX), and scanning electron microscopy (SEM). The influence of six operational parameters, viz., adsorbate concentration (initial), dose of adsorbent, pH, temperature, shaking speed, and contact time on the adsorption of IBP has been conducted using batch experiments. With concentration of 15 mg/L, pH 3, temp of 25 °C, sorbent dose of 3.33 g/L, speed of 150 rpm, and interaction period of 5 h, the maximum removal% of IBP achieved was 91.09%. The process of adsorption was optimized using the central composite design (CCD) method of response surface methodology (RSM) and artificial neural network (ANN). The non-linearized technique using isotherm and kinetic models was used to validate the process efficiency of IBP removal. Langmuir isotherm and pseudo-second-order kinetic models were found to be best fitted with non-linear analysis. The viability of the sorptive expulsion process was confirmed by thermodynamic studies. Reusability study of spent biochar showed its IBP removal ability even after several cycles of use. The maximum adsorption capacity was noted as 77.51 mg/g. The cost of produced adsorbent was competitive. The microbial toxicity bioassay of the solution before and after IBP treatment showed no adverse effects; thus, it can be discharged in the environment. Hence, the modified biochar synthesized from agrowaste could be a viable cost-effective adsorbent towards IBP laden wastewater treatment.
AB - The prevalence of numerous pharmaceuticals in sewage effluent discharges has significantly decreased the life and quality of water bodies. Ibuprofen (IBP), an acidic non-steroid drug, is one such pharmaceutical being widely used for anti-inflammatory properties. The present work investigated the sorption efficiency of base activated biochar synthesized from green waste Tamarindus indica seeds for removing IBP from simulated water. The biochar was instrumentally analyzed by Fourier transform infrared spectroscopy (FTIR), energy-dispersive X-ray analysis (EDX), and scanning electron microscopy (SEM). The influence of six operational parameters, viz., adsorbate concentration (initial), dose of adsorbent, pH, temperature, shaking speed, and contact time on the adsorption of IBP has been conducted using batch experiments. With concentration of 15 mg/L, pH 3, temp of 25 °C, sorbent dose of 3.33 g/L, speed of 150 rpm, and interaction period of 5 h, the maximum removal% of IBP achieved was 91.09%. The process of adsorption was optimized using the central composite design (CCD) method of response surface methodology (RSM) and artificial neural network (ANN). The non-linearized technique using isotherm and kinetic models was used to validate the process efficiency of IBP removal. Langmuir isotherm and pseudo-second-order kinetic models were found to be best fitted with non-linear analysis. The viability of the sorptive expulsion process was confirmed by thermodynamic studies. Reusability study of spent biochar showed its IBP removal ability even after several cycles of use. The maximum adsorption capacity was noted as 77.51 mg/g. The cost of produced adsorbent was competitive. The microbial toxicity bioassay of the solution before and after IBP treatment showed no adverse effects; thus, it can be discharged in the environment. Hence, the modified biochar synthesized from agrowaste could be a viable cost-effective adsorbent towards IBP laden wastewater treatment.
KW - Adsorption
KW - Biochar
KW - Ibuprofen
KW - Optimization
KW - Toxicity analysis
KW - Water treatment
UR - http://www.scopus.com/inward/record.url?scp=85135707206&partnerID=8YFLogxK
U2 - 10.1007/s13399-022-03161-1
DO - 10.1007/s13399-022-03161-1
M3 - Article
AN - SCOPUS:85135707206
SN - 2190-6815
VL - 14
SP - 11579
EP - 11600
JO - Biomass Conversion and Biorefinery
JF - Biomass Conversion and Biorefinery
IS - 10
ER -