Sol-gel synthesis of MnxNi1-xCo2O4 spinel phase materials: Structural, electronic, and magnetic properties

Tarekegn Heliso Dolla, Karin Pruessner, David G. Billing, Charles Sheppard, Aletta Prinsloo, Emanuela Carleschi, Bryan Doyle, Patrick Ndungu

Research output: Contribution to journalArticlepeer-review

40 Citations (Scopus)

Abstract

A series of spinel-type MnxNi1-xCo2O4 (x = 0, 0.3, 0.5, 0.7, 1) oxides were synthesized by using a citrate sol-gel technique. The structural, magnetic and electronic properties of the oxides with different Mn content were investigated using X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), vibrating sample magnetometer (VSM) and X-ray photoelectron spectroscopy (XPS). The XRD and FTIR studies revealed that MnxNi1-xCo2O4 formed in a cubic structure for all the compositions synthesized. Transmission electron microscopy (TEM) studies show cubic nano-plates for x = 0 and on increasing Mn concentration, agglomerated nanoparticles with sphere-like shape are observed with a particle size in the range of 11.7 nm–22.1 nm. This is in close agreement with the results of XRD analysis. The Mn 2p, Ni 2p, and Co 2p XPS spectra reveal the coexistence of Mn2+, Mn3+, Ni2+, Ni3+, Co2+, and Co3+ species on the surface of MnxNi1-xCo2O4 samples in differing proportions. The measurements of magnetic properties at room temperature show that the samples have some ferromagnetic behaviour. The saturation magnetization, remnant magnetization, and coercivity of the nanoparticles vary significantly with a concentration of Mn, which tends to be distributed in both tetrahedral and octahedral positions of the spinel lattice.

Original languageEnglish
Pages (from-to)78-89
Number of pages12
JournalJournal of Alloys and Compounds
Volume742
DOIs
Publication statusPublished - 25 Apr 2018

Keywords

  • Magnetic measurements
  • Nanostructured materials
  • Oxide materials
  • Photoelectron spectroscopies
  • Sol-gel processes
  • X-ray diffraction

ASJC Scopus subject areas

  • Mechanics of Materials
  • Mechanical Engineering
  • Metals and Alloys
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Sol-gel synthesis of MnxNi1-xCo2O4 spinel phase materials: Structural, electronic, and magnetic properties'. Together they form a unique fingerprint.

Cite this