Smart arginine-equipped polycationic nanoparticles for p/CRISPR delivery into cells

Pardis Moradi, Akbar Hasanzadeh, Fatemeh Radmanesh, Saideh Rajai Daryasarei, Elaheh Sadat Hosseini, Jafar Kiani, Ali Shahbazi, Helena Nourizadeh, Maryam Eslami, Akbar Dorgalaleh, Maryam Sahlolbei, Michael R. Hamblin, Mahdi Karimi

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)

Abstract

An efficient and safe delivery system for the transfection of CRISPR plasmid (p/CRISPR) into target cells can open new avenues for the treatment of various diseases. Herein, we design a novel nonvehicle by integrating an arginine-disulfide linker with low-molecular-weight PEI (PEI1.8k) for the delivery of p/CRISPR. These PEI1.8k-Arg nanoparticles facilitate the plasmid release and improve both membrane permeability and nuclear localization, thereby exhibiting higher transfection efficiency compared to native PEI1.8k in the delivery of nanocomplexes composed of PEI1.8k-Arg and p/CRISPR into conventional cells (HEK 293T). This nanovehicle is also able to transfect p/CRISPR in a wide variety of cells, including hard-to-transfect primary cells (HUVECs), cancer cells (HeLa), and neuronal cells (PC-12) with nearly 5-10 times higher efficiency compared to the polymeric gold standard transfection agent. Furthermore, the PEI1.8k-Arg nanoparticles can edit the GFP gene in the HEK 293T-GFP reporter cell line by delivering all possible forms of CRISPR/Cas9 system (e.g. plasmid encoding Cas9 and sgRNA targeting GFP, and Cas9/sgRNA ribonucleoproteins (RNPs) as well as Cas9 expression plasmid and in vitro-prepared sgRNA) into HEK 293T-GFP cells. The successful delivery of p/CRISPR into local brain tissue is also another remarkable capability of these nanoparticles. In view of all the exceptional benefits of this safe nanocarrier, it is expected to break new ground in the field of gene editing, particularly for therapeutic purposes.

Original languageEnglish
Article number075104
JournalNanotechnology
Volume33
Issue number7
DOIs
Publication statusPublished - 12 Feb 2022
Externally publishedYes

Keywords

  • brain
  • gene editing
  • nano-carrier
  • p/CRISPR transfection

ASJC Scopus subject areas

  • Bioengineering
  • General Chemistry
  • General Materials Science
  • Mechanics of Materials
  • Mechanical Engineering
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Smart arginine-equipped polycationic nanoparticles for p/CRISPR delivery into cells'. Together they form a unique fingerprint.

Cite this