Sludge to energy recovery dosed with selected trace metals additives in anaerobic digestion processes

Research output: Contribution to journalArticlepeer-review

12 Citations (Scopus)


The energy demand is ever rising with population increase and technology evolution. Coal consumption in South Africa is estimated to be 86% of the total energy demand. It has a high magnitude of environmental pollution and contributes to climate change. This calls for cleaner, reliable, sustainable, decarbonized, decentralized, affordable, digitized with the diversification of energy mix. The study aimed at investigating the impact of dosing selected trace metals (Ni, Co, Cu) as an additive to the substrate in the sludge to energy recovery using anaerobic processes. Sewage sludge and cellulose were used as a substrate. The biomethane potential study was carried from a 500 mL batch automated bio-digester at a mesophilic temperature of 37 °C and a substratum-to-inoculum ratio (2:1) of the organic load rate. The dosed micro-nutrients acted as microbial-agents responsible for the anaerobic digestion of the feedstock. Cellulose and sludge at 0.25 mg/L (Ni) recorded the highest production of the biomethane. Cellulose inoculated with cobalt had better biomethane production at 0.02 mg/L until 0.05 mg/L. High production of biomethane was observed at the substrate with a copper concentration of 4.5 mg/L. Adding trace metals to microbial cell surroundings stimulated microbial activity and prevented the accumulation of the fatty acids. However, high concentrations beyond threshold resulted in inhibition, toxicity to the microbial-growth, which was reflected in the reduction of the production of biomethane.

Original languageEnglish
Article number105869
JournalBiomass and Bioenergy
Publication statusPublished - Jan 2021


  • Additive
  • Anaerobic digestion
  • Biomethane
  • Inhibition
  • Mesophilic temperature
  • Trace metals

ASJC Scopus subject areas

  • Forestry
  • Renewable Energy, Sustainability and the Environment
  • Agronomy and Crop Science
  • Waste Management and Disposal


Dive into the research topics of 'Sludge to energy recovery dosed with selected trace metals additives in anaerobic digestion processes'. Together they form a unique fingerprint.

Cite this