Sizes of atmospheric particulate matters determine the outcomes of their interactions with rainfall processes

Relotilwe Maboa, Kowiyou Yessoufou, Solomon Tesfamichael, Yegnanew A. Shiferaw

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

Environmental sustainability remains at risk, given the coupled trends of economic development with air pollution. The risk is even greater in the water-stressed world, given the potential suppression effects of air pollutants on rain formation. Here, since these suppression effects remain debated, we tested the hypothesis that air pollutants suppress rainfall in the water-stressed South Africa. This was done by fitting generalized linear models to a 21-year historical dataset of rainfall and air pollutants. We found that some gaseous pollutants and PM10 show a significant negative correlation with rainfall, perhaps due to the temperature inversion they cause, which might prevent the upward rise of humid air and convective clouds to grow high enough to produce rain. Surprisingly, as opposed to PM10, we found a rather positive significant effect of PM2.5. Altogether, our study supports the hypothesis of rain prevention by pollutants but provides some nuances that are dependent on the size of air particle matters. To achieve environmental sustainability while growing the economy, we can only rely on emission purification technologies to strike this trade-off.

Original languageEnglish
Article number17467
JournalScientific Reports
Volume12
Issue number1
DOIs
Publication statusPublished - Dec 2022

ASJC Scopus subject areas

  • Multidisciplinary

Fingerprint

Dive into the research topics of 'Sizes of atmospheric particulate matters determine the outcomes of their interactions with rainfall processes'. Together they form a unique fingerprint.

Cite this