Abstract
In honor of Professor Peter Slater's work on paired domination, we introduce a relaxed version of paired domination, namely semipaired domination. Let G be a graph with vertex set V and no isolated vertices. A subset S ⊆ V is a semipaired dominating set of G if every vertex in V \ S is adjacent to a vertex in S and S can be partitioned into two element subsets such that the vertices in each subset are at most distance two apart. The semipaired domination number γPr2(G) is the minimum cardinality of a semipaired dominating set of G. In this paper, we study the semipaired domination versus other domination parameters. For example, we show that γ(G) ≤ γPr2(G) ≤ 2γ(G) and 2/3γt(G) ≤ γPr2(T) ≤ γ 4/3γt(G), where γ(G) and γt(G) denote the domination and total domination numbers of G. We characterize the trees G for which γPr2(G) = 2γ(G).
Original language | English |
---|---|
Pages (from-to) | 93-109 |
Number of pages | 17 |
Journal | Journal of Combinatorial Mathematics and Combinatorial Computing |
Volume | 104 |
Publication status | Published - Feb 2018 |
Keywords
- Matching
- Paired domination
- Semipaired domination
- Semitotal domination
ASJC Scopus subject areas
- General Mathematics