Selenium nanoparticles–enhanced potato starch film for active food packaging application

Bongekile K. Ndwandwe, Soraya P. Malinga, Eugenie Kayitesi, Bhekisisa C. Dlamini

Research output: Contribution to journalArticlepeer-review

11 Citations (Scopus)

Abstract

This work developed an active selenium nanoparticles-based potato starch film. The incorporation of selenium nanoparticles (SeNPs) improved the microstructure, physical and biological properties of the nanocomposite film. Scanning electron microscopy (SEM) showed a slight increase in surface roughness and heterogeneity of nanocomposite film. Addition of SeNPs resulted in an improvement in film thickness and density from 0.02 ± 0.01 to 0.04 ± 0.00 mm and 1.01 ± 0.12 to 1.31 ± 0.03 g cm−3, respectively, while water content, film solubility, swelling degree as well as water vapour transmission rate decreased. Integration of SeNPs into potato starch film caused a significant change (P < 0.05) of colour to red (a*) and yellow (b*). The tensile strength also improved with addition of SeNPs from 3.42 to 9.86 MPa. The presence of SeNPs in the potato starch film enhanced its antioxidant and antimicrobial activity. The overall migration and specific migration were within acceptable levels as stipulated in the EU regulations. The findings of this study present an alternative biodegradable biopolymer material that can be used as active food packaging material in replacement of nonbiodegradable synthetic polymer material.

Original languageEnglish
Pages (from-to)6512-6521
Number of pages10
JournalInternational Journal of Food Science and Technology
Volume57
Issue number10
DOIs
Publication statusPublished - Oct 2022

Keywords

  • active food packaging
  • antimicrobial activity
  • antioxidant activity
  • nanocomposite film
  • selenium nanoparticles

ASJC Scopus subject areas

  • Food Science
  • Industrial and Manufacturing Engineering

Fingerprint

Dive into the research topics of 'Selenium nanoparticles–enhanced potato starch film for active food packaging application'. Together they form a unique fingerprint.

Cite this