TY - JOUR
T1 - Secondary metabolic profiling of Serratia marcescens NP10 reveals new stephensiolides and glucosamine derivatives with bacterial membrane activity
AU - Clements-Decker, Tanya
AU - Rautenbach, Marina
AU - van Rensburg, Wilma
AU - Khan, Sehaam
AU - Stander, Marietjie
AU - Khan, Wesaal
N1 - Publisher Copyright:
© 2023, The Author(s).
PY - 2023/12
Y1 - 2023/12
N2 - Secondary metabolic profiling, using UPLC-MSE and molecular networking, revealed the secondary metabolites produced by Serratia marcescens NP10. The NP10 strain co-produced cyclic and open-ring stephensiolides (i.e., fatty acyl chain linked to Thr–Ser–Ser–Ile/Leu–Ile/Leu/Val) and glucosamine derivatives (i.e., fatty acyl chain linked to Val–glucose–butyric/oxo-hexanoic acid), with the structures of sixteen new stephensiolides (L–Y) and three new glucosamine derivatives (L–N) proposed. Genome mining identified sphA (stephensiolides) and gcd (glucosamine derivatives) gene clusters within Serratia genomes available on NBCI using antiSMASH, revealing specificity scores of the adenylation-domains within each module that corroborates MSE data. Of the nine RP-HPLC fractions, two stephensiolides and two glucosamine derivatives exhibited activity against Staphylococcus aureus (IC50 of 25–79 µg/mL). 1H NMR analysis confirmed the structure of the four active compounds as stephensiolide K, a novel analogue stephensiolide U, and glucosamine derivatives A and C. Stephensiolides K and U were found to cause membrane depolarisation and affect the membrane permeability of S. aureus, while glucosamine derivatives A and C primarily caused membrane depolarisation. New members of the stephensiolide and glucosamine derivative families were thus identified, and results obtained shed light on their antibacterial properties and mode of membrane activity.
AB - Secondary metabolic profiling, using UPLC-MSE and molecular networking, revealed the secondary metabolites produced by Serratia marcescens NP10. The NP10 strain co-produced cyclic and open-ring stephensiolides (i.e., fatty acyl chain linked to Thr–Ser–Ser–Ile/Leu–Ile/Leu/Val) and glucosamine derivatives (i.e., fatty acyl chain linked to Val–glucose–butyric/oxo-hexanoic acid), with the structures of sixteen new stephensiolides (L–Y) and three new glucosamine derivatives (L–N) proposed. Genome mining identified sphA (stephensiolides) and gcd (glucosamine derivatives) gene clusters within Serratia genomes available on NBCI using antiSMASH, revealing specificity scores of the adenylation-domains within each module that corroborates MSE data. Of the nine RP-HPLC fractions, two stephensiolides and two glucosamine derivatives exhibited activity against Staphylococcus aureus (IC50 of 25–79 µg/mL). 1H NMR analysis confirmed the structure of the four active compounds as stephensiolide K, a novel analogue stephensiolide U, and glucosamine derivatives A and C. Stephensiolides K and U were found to cause membrane depolarisation and affect the membrane permeability of S. aureus, while glucosamine derivatives A and C primarily caused membrane depolarisation. New members of the stephensiolide and glucosamine derivative families were thus identified, and results obtained shed light on their antibacterial properties and mode of membrane activity.
UR - http://www.scopus.com/inward/record.url?scp=85147787154&partnerID=8YFLogxK
U2 - 10.1038/s41598-023-28502-6
DO - 10.1038/s41598-023-28502-6
M3 - Article
C2 - 36759548
AN - SCOPUS:85147787154
SN - 2045-2322
VL - 13
JO - Scientific Reports
JF - Scientific Reports
IS - 1
M1 - 2360
ER -