Abstract
Middle East (ME) countries have arid and semi-arid climates with low annual precipitation and considerable geographical and temporal variability, which contribute to their extremely erratic rainfall. The generation of timely and accurate climatic information for the ME is anticipated to be aided by global reanalysis products and satellite-based precipitation estimations. Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) and Climate Hazards Group Infra-Red Precipitation (CHIRPS) on Google Earth Engine (GEE) were used to study rainfall in eleven chosen ME counties from 2000 to 2023. This study shows that Saudi Arabia (509.64 mm/December–January–February; DJF), Iraq (211.50 mm/September–October–November; SON), Iran (306.35 mm/SON), Jordan (161.28 mm/DJF), Kuwait (44.66 mm), Syria (246.51 mm/DJF), UAE–Qatar–Bahrain (28.62 mm/SON), Oman (64.90 mm/June–July–August; JJA), and Yemen (240.27 mm/SON) were the countries with the highest rainfall. Due to improved ground station integration, CHIRPS also reports larger rainfall anomalies, with a peak of 59.15 mm in DJF, mainly in northern Iran, Iraq, and Syria. PERSIANN understates heavy rainfall, probably because it relies on infrared satellite data, with a maximum anomaly of 4.15 mm. Saudi Arabia saw heavy rain during the JJA months, while others received less. More accurate rainfall forecasts in the ME can lessen the effects of floods and droughts, promoting environmental resilience and regional economic stability. Therefore, a more comprehensive understanding of all the relevant components is necessary to address these difficulties. Both environmental and human impacts must be taken into account for sustainable solutions.
| Original language | English |
|---|---|
| Article number | 1475 |
| Journal | Water (Switzerland) |
| Volume | 17 |
| Issue number | 10 |
| DOIs | |
| Publication status | Published - May 2025 |
Keywords
- CHIRPS data
- PERSIANN data
- anomaly
- climate change
- forecasting
- rainfall
ASJC Scopus subject areas
- Biochemistry
- Geography, Planning and Development
- Aquatic Science
- Water Science and Technology