TY - JOUR
T1 - Seasonal Precipitation and Anomaly Analysis in Middle East Asian Countries Using Google Earth Engine
AU - Radwan, Neyara
AU - Halder, Bijay
AU - Ahmed, Minhaz Farid
AU - Refadah, Samyah Salem
AU - Khan, Mohd Yawar Ali
AU - Scholz, Miklas
AU - Sammen, Saad Sh
AU - Pande, Chaitanya Baliram
N1 - Publisher Copyright:
© 2025 by the authors.
PY - 2025/5
Y1 - 2025/5
N2 - Middle East (ME) countries have arid and semi-arid climates with low annual precipitation and considerable geographical and temporal variability, which contribute to their extremely erratic rainfall. The generation of timely and accurate climatic information for the ME is anticipated to be aided by global reanalysis products and satellite-based precipitation estimations. Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) and Climate Hazards Group Infra-Red Precipitation (CHIRPS) on Google Earth Engine (GEE) were used to study rainfall in eleven chosen ME counties from 2000 to 2023. This study shows that Saudi Arabia (509.64 mm/December–January–February; DJF), Iraq (211.50 mm/September–October–November; SON), Iran (306.35 mm/SON), Jordan (161.28 mm/DJF), Kuwait (44.66 mm), Syria (246.51 mm/DJF), UAE–Qatar–Bahrain (28.62 mm/SON), Oman (64.90 mm/June–July–August; JJA), and Yemen (240.27 mm/SON) were the countries with the highest rainfall. Due to improved ground station integration, CHIRPS also reports larger rainfall anomalies, with a peak of 59.15 mm in DJF, mainly in northern Iran, Iraq, and Syria. PERSIANN understates heavy rainfall, probably because it relies on infrared satellite data, with a maximum anomaly of 4.15 mm. Saudi Arabia saw heavy rain during the JJA months, while others received less. More accurate rainfall forecasts in the ME can lessen the effects of floods and droughts, promoting environmental resilience and regional economic stability. Therefore, a more comprehensive understanding of all the relevant components is necessary to address these difficulties. Both environmental and human impacts must be taken into account for sustainable solutions.
AB - Middle East (ME) countries have arid and semi-arid climates with low annual precipitation and considerable geographical and temporal variability, which contribute to their extremely erratic rainfall. The generation of timely and accurate climatic information for the ME is anticipated to be aided by global reanalysis products and satellite-based precipitation estimations. Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) and Climate Hazards Group Infra-Red Precipitation (CHIRPS) on Google Earth Engine (GEE) were used to study rainfall in eleven chosen ME counties from 2000 to 2023. This study shows that Saudi Arabia (509.64 mm/December–January–February; DJF), Iraq (211.50 mm/September–October–November; SON), Iran (306.35 mm/SON), Jordan (161.28 mm/DJF), Kuwait (44.66 mm), Syria (246.51 mm/DJF), UAE–Qatar–Bahrain (28.62 mm/SON), Oman (64.90 mm/June–July–August; JJA), and Yemen (240.27 mm/SON) were the countries with the highest rainfall. Due to improved ground station integration, CHIRPS also reports larger rainfall anomalies, with a peak of 59.15 mm in DJF, mainly in northern Iran, Iraq, and Syria. PERSIANN understates heavy rainfall, probably because it relies on infrared satellite data, with a maximum anomaly of 4.15 mm. Saudi Arabia saw heavy rain during the JJA months, while others received less. More accurate rainfall forecasts in the ME can lessen the effects of floods and droughts, promoting environmental resilience and regional economic stability. Therefore, a more comprehensive understanding of all the relevant components is necessary to address these difficulties. Both environmental and human impacts must be taken into account for sustainable solutions.
KW - anomaly
KW - CHIRPS data
KW - climate change
KW - forecasting
KW - PERSIANN data
KW - rainfall
UR - http://www.scopus.com/inward/record.url?scp=105006771260&partnerID=8YFLogxK
U2 - 10.3390/w17101475
DO - 10.3390/w17101475
M3 - Article
AN - SCOPUS:105006771260
SN - 2073-4441
VL - 17
JO - Water (Switzerland)
JF - Water (Switzerland)
IS - 10
M1 - 1475
ER -