TY - JOUR
T1 - Search for nuclearites with the KM3NeT detector
AU - the KM3NeT Collaboration
AU - Păun, Alice
AU - Păvălaș, Gabriela
AU - Popa, Vlad
AU - Ageron, M.
AU - Aiello, S.
AU - Albert, A.
AU - Alshamsi, M.
AU - Alves Garre, S.
AU - Aly, Z.
AU - Ambrosone, A.
AU - Ameli, F.
AU - Andre, M.
AU - Androulakis, G.
AU - Anghinolfi, M.
AU - Anguita, M.
AU - Anton, G.
AU - Ardid, M.
AU - Ardid, S.
AU - Assal, W.
AU - Aublin, J.
AU - Bagatelas, C.
AU - Baret, B.
AU - Basegmez du Pree, S.
AU - Bendahman, M.
AU - Benfenati, F.
AU - Berbee, E.
AU - van den Berg, A. M.
AU - Bertin, V.
AU - Beurthey, S.
AU - van Beveren, V.
AU - Biagi, S.
AU - Billault, M.
AU - Bissinger, M.
AU - Boettcher, M.
AU - Bou Cabo, M.
AU - Boumaaza, J.
AU - Bouta, M.
AU - Boutonnet, C.
AU - Bouvet, G.
AU - Bouwhuis, M.
AU - Bozza, C.
AU - Branza, H.
AU - Bruijn, R.
AU - Brunner, J.
AU - Bruno, R.
AU - Buis, E.
AU - Buompane, R.
AU - Busto, J.
AU - Caiffi, B.
AU - Razzaque, S.
N1 - Publisher Copyright:
© Copyright owned by the author(s).
PY - 2022/3/18
Y1 - 2022/3/18
N2 - Strange quark matter (SQM) is a hypothetical type of matter composed of almost equal quantities of up, down and strange quarks. In [1], Edward Witten presented the SQM as a denser and more stable matter that could represent the ground state of Quantum Chromodynamics (QCD). Massive SQM particles are called nuclearites. These particles could have been produced in violent astrophysical processes, such as neutron star collisions and could be present in the cosmic radiation. Nuclearites with masses greater than 1013 GeV and velocities of about 250 km/s (typical galactic velocities) could reach the Earth and interact with atoms and molecules of sea water within the sensitive volume of the deep-sea neutrino telescopes. The SQM particles can be detected with the KM3NeT telescope (whose first lines are already installed and taking data in the Mediterranean Sea) through the visible blackbody radiation generated along their path inside or near the instrumented area. In this work the results of a study using Monte Carlo simulations of down-going nuclearites are discussed.
AB - Strange quark matter (SQM) is a hypothetical type of matter composed of almost equal quantities of up, down and strange quarks. In [1], Edward Witten presented the SQM as a denser and more stable matter that could represent the ground state of Quantum Chromodynamics (QCD). Massive SQM particles are called nuclearites. These particles could have been produced in violent astrophysical processes, such as neutron star collisions and could be present in the cosmic radiation. Nuclearites with masses greater than 1013 GeV and velocities of about 250 km/s (typical galactic velocities) could reach the Earth and interact with atoms and molecules of sea water within the sensitive volume of the deep-sea neutrino telescopes. The SQM particles can be detected with the KM3NeT telescope (whose first lines are already installed and taking data in the Mediterranean Sea) through the visible blackbody radiation generated along their path inside or near the instrumented area. In this work the results of a study using Monte Carlo simulations of down-going nuclearites are discussed.
UR - http://www.scopus.com/inward/record.url?scp=85144359713&partnerID=8YFLogxK
M3 - Conference article
AN - SCOPUS:85144359713
SN - 1824-8039
VL - 395
JO - Proceedings of Science
JF - Proceedings of Science
M1 - 1152
T2 - 37th International Cosmic Ray Conference, ICRC 2021
Y2 - 12 July 2021 through 23 July 2021
ER -