Scaling of the F2 structure function in nuclei and quark distributions at x>1

N. Fomin, J. Arrington, D. B. Day, D. Gaskell, A. Daniel, J. Seely, R. Asaturyan, F. Benmokhtar, W. Boeglin, B. Boillat, P. Bosted, A. Bruell, M. H.S. Bukhari, M. E. Christy, E. Chudakov, B. Clasie, S. H. Connell, M. M. Dalton, D. Dutta, R. EntL. El Fassi, H. Fenker, B. W. Filippone, K. Garrow, C. Hill, R. J. Holt, T. Horn, M. K. Jones, J. Jourdan, N. Kalantarians, C. E. Keppel, D. Kiselev, M. Kotulla, R. Lindgren, A. F. Lung, S. Malace, P. Markowitz, P. McKee, D. G. Meekins, T. Miyoshi, H. Mkrtchyan, T. Navasardyan, G. Niculescu, Y. Okayasu, A. K. Opper, C. Perdrisat, D. H. Potterveld, V. Punjabi, X. Qian, P. E. Reimer, J. Roche, V. M. Rodriguez, O. Rondon, E. Schulte, E. Segbefia, K. Slifer, G. R. Smith, P. Solvignon, V. Tadevosyan, S. Tajima, L. Tang, G. Testa, R. Trojer, V. Tvaskis, W. F. Vulcan, C. Wasko, F. R. Wesselmann, S. A. Wood, J. Wright, X. Zheng

Research output: Contribution to journalArticlepeer-review

23 Citations (Scopus)

Abstract

We present new data on electron scattering from a range of nuclei taken in Hall C at Jefferson Lab. For heavy nuclei, we observe a rapid falloff in the cross section for x>1, which is sensitive to short-range contributions to the nuclear wave function, and in deep inelastic scattering corresponds to probing extremely high momentum quarks. This result agrees with higher energy muon scattering measurements, but is in sharp contrast to neutrino scattering measurements which suggested a dramatic enhancement in the distribution of the "superfast" quarks probed at x>1. The falloff at x>1 is noticeably stronger in H2 and He3, but nearly identical for all heavier nuclei.

Original languageEnglish
Article number212502
JournalPhysical Review Letters
Volume105
Issue number21
DOIs
Publication statusPublished - 17 Nov 2010

ASJC Scopus subject areas

  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Scaling of the F2 structure function in nuclei and quark distributions at x>1'. Together they form a unique fingerprint.

Cite this