Abstract
Cancer is one of the greatest life-threatening diseases conventionally treated using chemo- and radio-therapy. Photodynamic therapy (PDT) is a promising approach to eradicate different types of cancers. PDT requires the administration of photosensitisers (PSs) and photoactivation using a specific wavelength of light in the presence of molecular oxygen. This photoactivation exerts an anticancer effect via apoptosis, necrosis, and autophagy of cancer cells. Recently, various natural compounds that exhibit photosensitising potentials have been identified. Photoactive substances derived from medicinal plants have been found to be safe in comparison with synthetic compounds. Many articles have focused on PDT mechanisms and types of PSs, but limited attention has been paid to the phototoxic activities of phytocompounds. The reduced toxicity and side effects of natural compounds inspire the researchers to identify and use plant extracts or phytocompounds as a potent natural PS candidate for PDT. This review focusses on the importance of common photoactive groups (furanocoumarins, polyacetylenes, thiophenes, curcumins, alkaloids, and anthraquinones), their phototoxic effects, anticancer activity and use as a potent PS for an effective PDT outcome in the treatment of various cancers.
Original language | English |
---|---|
Article number | 4102 |
Journal | Molecules |
Volume | 25 |
Issue number | 18 |
DOIs | |
Publication status | Published - Sept 2020 |
Keywords
- Cancer
- Natural compounds
- Photodynamic therapy
- Photosensitiser
ASJC Scopus subject areas
- Analytical Chemistry
- Chemistry (miscellaneous)
- Molecular Medicine
- Pharmaceutical Science
- Drug Discovery
- Physical and Theoretical Chemistry
- Organic Chemistry