Revolutionizing cancer treatment via bioengineered extracellular vesicles: Exploring nanovesicles to fully synthetic solutions

Minmin Shao, Juliana Rodrigues, Inês Sousa-Oliveira, Madineh Moradialvand, Parisa Asadollahi, Francisco Veiga, Huma Hameed, Niraj Kumar Jha, Mika Sillanpää, Gautam Sethi, Ana Cláudia Paiva-Santos, Pooyan Makvandi

Research output: Contribution to journalReview articlepeer-review

Abstract

The prevalence of cancer on a global scale has necessitated the development of various therapeutic approaches. However, the effectiveness and safety of existing methods often face some limitations. Nanotechnology has emerged as a solution, enabling the design of nanosystems that can effectively deliver drugs. These nanosystems address challenges such as low drug stability and solubility, as well as the lack of tumor targetability. While nanomaterials offer advantages, certain nanoparticles have their own limitations, which has prompted researchers to explore innovative drug delivery systems. One promising avenue is the use of extracellular vesicles (EVs), which are natural nanoparticles secreted by cells. EVs possess biocompatibility, stability, and targeting capabilities, making them ideal candidates for drug carriers. However, challenges still remain in this field. These include limited production yield, complexity, inefficient cargo loading, and controlled release of drugs. To overcome these challenges, researchers have been employing engineering techniques to modify the structures of EVs, enhancing their intrinsic properties. Surface modification and hybrid systems that combine EVs with other structures have shown potential in addressing these limitations. This review focuses on the landscape of EVs and their crucial role in cancer therapeutics and diagnosis. It begins by exploring the biological functions and properties of EVs. Additionally, the review introduces the strategies for isolating EVs, shedding light on the methodologies used to harvest these minute entities. Finally, the review highlights the biomedical applications of bioengineering techniques in cancer treatment.

Original languageEnglish
Article number102395
JournalApplied Materials Today
Volume40
DOIs
Publication statusPublished - Oct 2024
Externally publishedYes

Keywords

  • Cancer
  • Engineering technique
  • Extracelullar vesicle
  • Hybrid system

ASJC Scopus subject areas

  • General Materials Science

Fingerprint

Dive into the research topics of 'Revolutionizing cancer treatment via bioengineered extracellular vesicles: Exploring nanovesicles to fully synthetic solutions'. Together they form a unique fingerprint.

Cite this