Red/near-infrared light-emitting diode therapy for traumatic brain injury

Margaret A. Naeser, Paula I. Martin, Michael D. Ho, Maxine H. Krengel, Yelena Bogdanova, Jeffrey A. Knight, Megan K. Yee, Ross Zafonte, Judith Frazier, Michael R. Hamblin, Bang Bon Koo

Research output: Contribution to journalConference articlepeer-review

3 Citations (Scopus)

Abstract

This invited paper reviews our research with scalp application of red/near-infrared (NIR) light-emitting diodes (LED) to improve cognition in chronic, traumatic brain injury 1. Application of red/NIR light improves mitochondrial function (especially hypoxic/compromised cells) promoting increased ATP, important for cellular metabolism. Nitric oxide is released locally, increasing regional cerebral blood flow. Eleven chronic, mTBI participants with closed-head injury and cognitive dysfunction received 18 outpatient treatments (MWF, 6 Wks) starting at 10 Mo. to 8 Yr. post-mTBI (MVA, sports-related, IED blast injury). LED therapy is non-invasive, painless, non-thermal (FDA-cleared, non-significant risk device). Each LED cluster head (2.1" diameter, 500mW, 22.2mW/cm2) was applied 10 min (13J/cm2) to 11 scalp placements: midline, from front-to-back hairline; and bilaterally on dorsolateral prefrontal cortex, temporal, and parietal areas. Testing performed pre- And post-LED (+1 Wk, 1 and 2 Mo post- 18th treatment) showed significant linear trend for LED effect over time, on improved executive function and verbal memory. Fewer PTSD symptoms were reported. New studies at VA Boston include TBI patients treated with transcranial LED (26J/cm2); or treated with only intranasal red, 633nm and NIR, 810nm diodes placed into the nostrils (25 min, 6.5mW, 11.4J/cm2). Intranasal LEDs are hypothesized to deliver photons to hippocampus. Results are similar to Naeser et al. (2014). Actigraphy sleep data show increased sleep time (average, +1 Hr/night) post- 18th transcranial or intranasal LED treatment. LED treatments may be self-administered at home (Naeser et al., 2011). A shamcontrolled study with Gulf War Illness Veterans is underway.

Original languageEnglish
Article number94670M
JournalProceedings of SPIE - The International Society for Optical Engineering
Volume9467
Issue numberJanuary
DOIs
Publication statusPublished - 2015
Externally publishedYes
Event2015 Micro- and Nanotechnology (MNT) Sensors, Systems, and Applications VII Conference - Baltimore, United States
Duration: 20 Apr 201524 Apr 2015

Keywords

  • Cognitive dysfunction
  • LLLT
  • Light emitting diodes LED
  • PTSD
  • Photobiomodulation therapy
  • Post-concussion syndrome
  • Sports head injury
  • TBI
  • TBI treatment
  • Traumatic brain injury

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Red/near-infrared light-emitting diode therapy for traumatic brain injury'. Together they form a unique fingerprint.

Cite this