Recovery of Palladium and Gold from PGM Ore and Concentrates Using ZnAl-Layered Double Hydroxide@zeolitic Imidazolate Framework-8 Nanocomposite

Nkositetile Raphael Biata, Silindokuhle Jakavula, Anele Mpupa, Richard M. Moutloali, Philiswa Nosizo Nomngongo

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

Gold (Au) and palladium (Pd) are platinum group metals (PGMs) that are considered critical in society because they are required in several industrial applications. Their shortage has caused the urgent need for their recovery from secondary resources. Therefore, there is a need to develop functional materials with high adsorption capacity and selectivity for recovery of PGMs from various secondary sources. In this study, a Zn-Al-layered double hydroxide@zeolitic imidazolate framework-8 (Zn–Al–LDH@ZIF–8) nanocomposite was used as an adsorbent for the recovery of Au and Pd from ore concentrates. The Zn–Al–LDH@ZIF–8 nanocomposite was characterised using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), transmission electron spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, zeta potential, and X-ray diffraction (XRD) spectroscopy. The recovery of Au(III) and Pd(II) was achieved using ultrasound-assisted dispersive µ-solid-phase extraction (UA-D-µ-SPE) and their quantification was attained using an inductively coupled plasma mass spectrometer (ICP-MS). The results showed that the surface of the adsorbent remained positively charged in a wide pH range, which endowed the nanocomposite with high adsorption affinity towards Au(III) and Pd(II). Under optimised conditions, the equilibrium studies revealed that the adsorption of Au(III) and Pd(II) ions followed the Langmuir isotherm model with maximum sorption capacities of 163 mg g−1 and 177 mg g−1 for Au(III) and Pd(II), respectively. The nanocomposite possessed relatively good regeneration, reusability, and stability characteristics, with its performance decreasing by only 10% after five adsorption–desorption cycles.

Original languageEnglish
Article number274
JournalSeparations
Volume9
Issue number10
DOIs
Publication statusPublished - Oct 2022

Keywords

  • dispersive µ-solid-phase extraction
  • electrostatic interactions
  • metal organic frameworks
  • porous nanocomposite
  • response surface methodology
  • reusable

ASJC Scopus subject areas

  • Analytical Chemistry
  • Filtration and Separation

Fingerprint

Dive into the research topics of 'Recovery of Palladium and Gold from PGM Ore and Concentrates Using ZnAl-Layered Double Hydroxide@zeolitic Imidazolate Framework-8 Nanocomposite'. Together they form a unique fingerprint.

Cite this