TY - JOUR
T1 - Quantum-inspired magnetic Hamiltonian Monte Carlo
AU - Mongwe, Wilson Tsakane
AU - Mbuvha, Rendani
AU - Marwala, Tshilidzi
N1 - Publisher Copyright:
© 2021 Mongwe et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2021/10
Y1 - 2021/10
N2 - Hamiltonian Monte Carlo (HMC) is a Markov Chain Monte Carlo algorithm that is able to generate distant proposals via the use of Hamiltonian dynamics, which are able to incorporate first-order gradient information about the target posterior. This has driven its rise in popularity in the machine learning community in recent times. It has been shown that making use of the energy-time uncertainty relation from quantum mechanics, one can devise an extension to HMC by allowing the mass matrix to be random with a probability distribution instead of a fixed mass. Furthermore, Magnetic Hamiltonian Monte Carlo (MHMC) has been recently proposed as an extension to HMC and adds a magnetic field to HMC which results in non-canonical dynamics associated with the movement of a particle under a magnetic field. In this work, we utilise the non-canonical dynamics of MHMC while allowing the mass matrix to be random to create the Quantum-Inspired Magnetic Hamiltonian Monte Carlo (QIMHMC) algorithm, which is shown to converge to the correct steady state distribution. Empirical results on a broad class of target posterior distributions show that the proposed method produces better sampling performance than HMC, MHMC and HMC with a random mass matrix.
AB - Hamiltonian Monte Carlo (HMC) is a Markov Chain Monte Carlo algorithm that is able to generate distant proposals via the use of Hamiltonian dynamics, which are able to incorporate first-order gradient information about the target posterior. This has driven its rise in popularity in the machine learning community in recent times. It has been shown that making use of the energy-time uncertainty relation from quantum mechanics, one can devise an extension to HMC by allowing the mass matrix to be random with a probability distribution instead of a fixed mass. Furthermore, Magnetic Hamiltonian Monte Carlo (MHMC) has been recently proposed as an extension to HMC and adds a magnetic field to HMC which results in non-canonical dynamics associated with the movement of a particle under a magnetic field. In this work, we utilise the non-canonical dynamics of MHMC while allowing the mass matrix to be random to create the Quantum-Inspired Magnetic Hamiltonian Monte Carlo (QIMHMC) algorithm, which is shown to converge to the correct steady state distribution. Empirical results on a broad class of target posterior distributions show that the proposed method produces better sampling performance than HMC, MHMC and HMC with a random mass matrix.
UR - http://www.scopus.com/inward/record.url?scp=85116511289&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0258277
DO - 10.1371/journal.pone.0258277
M3 - Article
C2 - 34610053
AN - SCOPUS:85116511289
SN - 1932-6203
VL - 16
JO - PLoS ONE
JF - PLoS ONE
IS - 10 October
M1 - e0258277
ER -