Quantum diffusion of isotropic muonium, MuT, in a 13C diamond

I. Z. Machi, S. H. Connell, M. Dalton, M. J. Sithole, K. Bharuth-Ram, S. F.J. Cox, C. Baines

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)

Abstract

This study explores the dynamical behavior of hydrogen in diamond, through the study of the hydrogenic analogue species known as the neutral atomic muonium state (MuT ≡ μ +e-). This can be readily studied by the transverse (longitudinal) field muon spin rotation (relaxation) techniques, briefly known as TF-μSR or LF-μSR respectively. This work focuses on the TF-μSR results for the paramagnetic MuT state. The MuT forms when an implanted positive muon captures an electron in crystalline solid-state materials. It occupies the tetrahedral interstitial site and diffuses via a pathway of these sites. The small mass of MuT is intermediate between the light electron and the heavy hydrogen, and is therefore suitable for studies of quantum diffusion in crystalline materials. In the process of diffusion, the spin polarization of the muon ensemble would be affected by interaction with electrons, via formation of correlated states or with the environment via dissipative processes. Such interactions can be monitored, almost background free and very precisely, in a host of experimental modes. This allows a powerful spectroscopy of the formed states as well as the monitoring of the dynamics of those states. In this work, the observables for both the MuT (73 ± 5%) and μd+ (4.3 ± 0.5%) states were measured in the 13C sample at temperatures ranging from 11 mK to 320 K, at an applied field of 5 mT. The measured spin relaxation rate for the MuT in the 13C sample is interpreted within the framework of quantum diffusion. The data show that quantum diffusion of the MuT state occurs up to unusually high temperatures in diamond. No evidence of diffusion could be obtained for the diamagnetic state.

Original languageEnglish
Pages (from-to)909-913
Number of pages5
JournalDiamond and Related Materials
Volume13
Issue number4-8
DOIs
Publication statusPublished - Apr 2004
Externally publishedYes

Keywords

  • Diamond
  • Diffusion
  • Muonium

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • General Chemistry
  • Mechanical Engineering
  • General Physics and Astronomy
  • Materials Chemistry
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Quantum diffusion of isotropic muonium, MuT, in a 13C diamond'. Together they form a unique fingerprint.

Cite this