Abstract

There are several environmental and human health impacts if human hair waste is not adequately disposed of. In this study, pyrolysis of discarded human hair was carried out. This research focused on the pyrolysis of discarded human hair under controlled environmental conditions. The effects of the mass of discarded human hair and temperature on bio-oil yield were studied. The proximate and ultimate analyses and calorific values of disposed of human hair, bio-oil, and biochar were determined. Further, chemical compounds of bio-oil were analyzed using a gas chromatograph and a mass spectrometer. Finally, the kinetic modeling and behavior of the pyrolysis process were characterized through FT-IR spectroscopy and thermal analysis. Based on the optimized mass of disposed of human hair, 250 g had a better bio-oil yield of 97% in the temperature range of 210–300 °C. The different parameters of bio-oil were: pH (2.87), specific gravity (1.17), moisture content (19%), heating value (19.34 MJ/kg), and viscosity (50 CP). C (56.4%), H (6.1%), N (0.16%), S (0.01%), O (38.4%), and Ash (0.1%) were discovered to be the elemental chemical composition of bio-oil (on a dry basis). During breakdown, the release of different compounds like hydrocarbons, aldehydes, ketones, acids, and alcohols takes place. According to the GC–MS results, several amino acids were discovered in the bio-oil, 12 abundant in the discarded human hair. The FTIR and thermal analysis found different concluding temperatures and wave numbers for functional groups. Two main stages are partially separated at about 305 °C, with maximum degradation rates at about 293 oC and 400–4140 °C, respectively. The mass loss was 30% at 293 0C and 82% at temperatures above 293 0C. When the temperature reached 4100C, the entire bio-oil from discarded human hair was distilled or thermally decomposed.

Original languageEnglish
Pages (from-to)125104-125116
Number of pages13
JournalEnvironmental Science and Pollution Research
Volume30
Issue number60
DOIs
Publication statusPublished - Dec 2023

Keywords

  • Activation energy
  • Bio-oil
  • Discarded hair
  • Mass optimization
  • Pyrolysis
  • Yield

ASJC Scopus subject areas

  • Environmental Chemistry
  • Pollution
  • Health, Toxicology and Mutagenesis

Fingerprint

Dive into the research topics of 'Pyrolytic conversion of human hair to fuel: performance evaluation and kinetic modelling'. Together they form a unique fingerprint.

Cite this