Abstract
This work investigates the effect of the addition of NaOH on the compatibility and material properties of thermoplastic starch-zein composite films produced by a twin-screw extruder. Thermoplastic starch-zein composite films were produced by melt extrusion of glycerol-plasticized starch and zein (3:1 ratio) treated with different concentrations of sodium hydroxide (NaOH) (0 M, 0.05 M, 0.1 M, and 0.2 M NaOH). Scanning Electron Microscope and Confocal laser Scanning Microscope revealed that the composite without NaOH formed a phase-separated morphology with large zein aggregates within the starch matrix. However, the increase in NaOH concentration reduced the size of zein aggregates within the starch-zein composite films, with 0.2 M NaOH having the smallest size of zein aggregates. Dynamic mechanical analysis showed a decrease in glass transition temperature (Tg) and storage modulus (E'), suggesting more molecular chain mobility and efficient plasticization of starch and zein. This efficient plasticization was also confirmed by Fourier-Transform Infrared spectroscopy (FTIR). As a result, there was an optimal increase of 28% in elongation at break in the starch-zein composite film with 0.2 M NaOH. In conclusion, compatible thermoplastic starch-zein composite films with improved elongation at break can be produced with a twin-screw extruder by adding 0.2 M NaOH.
Original language | English |
---|---|
Pages (from-to) | 443-452 |
Number of pages | 10 |
Journal | International Journal of Biological Macromolecules |
Volume | 208 |
DOIs | |
Publication status | Published - 31 May 2022 |
Externally published | Yes |
Keywords
- Aggregates
- Compatibility
- Plasticization
- Tensile properties
ASJC Scopus subject areas
- Structural Biology
- Biochemistry
- Molecular Biology
- Economics and Econometrics
- General Energy