TY - GEN
T1 - Profiling of genes central to human mitochondrial energy metabolism following low intensity laser irradiation
AU - Houreld, Nicolette N.
AU - Masha, Roland
AU - Abrahamse, Heidi
PY - 2012
Y1 - 2012
N2 - Background: Wound healing involves three overlapping phases: inflammation, granulation and tissue remodelling. If this process is disrupted, delayed wound healing ensues, a common complication seen in diabetic patients. Low intensity laser irradiation (LILI) has been found to promote healing in such patients. However, the exact mechanisms of action are poorly understood. Purpose: This study aimed to profile the expression of key genes involved in mitochondrial respiration. Materials and Methods: Diabetic wounded fibroblast cells were exposed to a wavelength of 660 nm and a fluence of 5 J/cm2 and incubated for 30 min. Total RNA was isolated and 1 μg reverse transcribed into cDNA which was used for real-time polymerase chain reaction (PCR) array analysis. The array contained genes important for each of the mitochondrial complexes involved in the electron transport chain (ETC). Adenosine triphosphate (ATP) levels were also determined post-irradiation by ATP luminescence. Results: Genes involved in complex IV (cytochrome c oxidase), COX6B2 and COX6C, and PPA1 which is involved in complex V (ATP synthase) were significantly up-regulated. There was a significant increase in ATP levels in diabetic wounded cells post-irradiation. Discussion and Conclusion: LILI stimulates the ETC at a transcriptional level, resulting in an increase in ATP. This study helps understand the mechanisms of LILI in diabetic wound healing, and gives information on activation of genes in response to LILI.
AB - Background: Wound healing involves three overlapping phases: inflammation, granulation and tissue remodelling. If this process is disrupted, delayed wound healing ensues, a common complication seen in diabetic patients. Low intensity laser irradiation (LILI) has been found to promote healing in such patients. However, the exact mechanisms of action are poorly understood. Purpose: This study aimed to profile the expression of key genes involved in mitochondrial respiration. Materials and Methods: Diabetic wounded fibroblast cells were exposed to a wavelength of 660 nm and a fluence of 5 J/cm2 and incubated for 30 min. Total RNA was isolated and 1 μg reverse transcribed into cDNA which was used for real-time polymerase chain reaction (PCR) array analysis. The array contained genes important for each of the mitochondrial complexes involved in the electron transport chain (ETC). Adenosine triphosphate (ATP) levels were also determined post-irradiation by ATP luminescence. Results: Genes involved in complex IV (cytochrome c oxidase), COX6B2 and COX6C, and PPA1 which is involved in complex V (ATP synthase) were significantly up-regulated. There was a significant increase in ATP levels in diabetic wounded cells post-irradiation. Discussion and Conclusion: LILI stimulates the ETC at a transcriptional level, resulting in an increase in ATP. This study helps understand the mechanisms of LILI in diabetic wound healing, and gives information on activation of genes in response to LILI.
UR - http://www.scopus.com/inward/record.url?scp=84873630925&partnerID=8YFLogxK
U2 - 10.1063/1.4757823
DO - 10.1063/1.4757823
M3 - Conference contribution
AN - SCOPUS:84873630925
SN - 9780735410985
T3 - AIP Conference Proceedings
SP - 53
EP - 62
BT - Advances in Laserology - Selected Papers of LASER FLORENCE 2011
T2 - LASER FLORENCE 2011: A Window on the Laser Medicine World
Y2 - 4 November 2011 through 5 November 2011
ER -