Profiling of chlorogenic acids from bidens pilosa and differentiation of closely related positional isomers with the aid of UHPLC-QTOF-MS/MS-based in-source collision-induced dissociation

Anza Tshilidzi Ramabulana, Paul Steenkamp, Ntakadzeni Madala, Ian A. Dubery

Research output: Contribution to journalArticlepeer-review

44 Citations (Scopus)

Abstract

Bidens pilosa is an edible herb from the Asteraceae family which is traditionally consumed as a leafy vegetable. B. pilosa has many bioactivities owing to its diverse phytochemicals, which include aliphatics, terpenoids, tannins, alkaloids, hydroxycinnamic acid (HCA) derivatives and other phenylpropanoids. The later include compounds such as chlorogenic acids (CGAs), which are produced as either regio-or geometrical isomers. To profile the CGA composition of B. pilosa, methanol extracts from tissues, callus and cell suspensions were utilized for liquid chromatography coupled to mass spectrometric detection (UHPLC-QTOF-MS/MS). An optimized in-source collisioninduced dissociation (ISCID) method capable of discriminating between closely related HCA derivatives of quinic acids, based on MS-based fragmentation patterns, was applied. Careful control of collision energies resulted in fragment patterns similar to MS2 and MS3 fragmentation, obtainable by a typical ion trap MSn approach. For the first time, an ISCID approach was shown to efficiently discriminate between positional isomers of chlorogenic acids containing two different cinnamoyl moieties, such as a mixed di-ester of feruloyl-caffeoylquinic acid (m/z 529) and coumaroylcaffeoylquinic acid (m/z 499). The results indicate that tissues and cell cultures of B. pilosa contained a combined total of 30 mono-, di-, and tri-substituted chlorogenic acids with positional isomers dominating the composition thereof. In addition, the tartaric acid esters, caftaric-and chicoric acids were also identified. Profiling revealed that these HCA derivatives were differentially distributed across tissues types and cell culture lines derived from leaf and stem explants.

Original languageEnglish
Article number178
JournalMetabolites
Volume10
Issue number5
DOIs
Publication statusPublished - May 2020

Keywords

  • Bidens pilosa
  • Cell culture
  • Chlorogenic acids
  • Hydroxycinnamic acids
  • ISCID
  • Metabolomics
  • Phytochemicals

ASJC Scopus subject areas

  • Endocrinology, Diabetes and Metabolism
  • Biochemistry
  • Molecular Biology

Fingerprint

Dive into the research topics of 'Profiling of chlorogenic acids from bidens pilosa and differentiation of closely related positional isomers with the aid of UHPLC-QTOF-MS/MS-based in-source collision-induced dissociation'. Together they form a unique fingerprint.

Cite this