TY - JOUR
T1 - Process optimization of extrusion variables and its effect on properties of extruded cocoyam (Xanthosoma sagittifolium) noodles
AU - Sobowale, Sunday Samuel
AU - Animashaun, Oluwatoyin Habibat
AU - Mulaba-Bafubiandi, Antoine Floribert
AU - Abidoye, Temitope Saratallahi
AU - Kewuyemi, Yusuf Olamide
AU - Adebo, Oluwafemi Ayodeji
N1 - Publisher Copyright:
© 2018 The Authors. Food Science & Nutrition published by Wiley Periodicals, Inc.
PY - 2018/11
Y1 - 2018/11
N2 - The current industrial demand for starchy foods has been dominated by other roots and tubers, while cocoyam, despite being rich in fiber, minerals, and vitamins has remained under exploited. In this study, the effect of feed moisture content (FMC), screw speed (SS) and barrel temperature (BT) on the quality characteristics of cocoyam noodles (proximate, thermo-physical, physicochemical, texture, color, extrudate properties, and sensory characteristics) were investigated using central composite design (CCD) of response surface methodology (RSM). Flour was produced from fresh tubers of cocoyam (Xanthosoma sagittifolium) and subsequently processed into noodles using a twin screw extruder. Results showed that the proximate compositions, thermo-physical, physicochemical properties, and color of the cocoyam noodles were significantly (p < 0.05) influenced by the extrusion process variables. The texture and extrudate properties of cocoyam noodles were equally significantly (p < 0.05) different. The experimental data obtained and predicted values of the response models were comparable, with statistical indices [absolute average deviation (AAD, 0–0.23), bias factor (Bf, 1–1.08), and accuracy factor (Af, 1–1.23)] indicating the validity of the derived models. The optimal extrusion processing conditions for quality cocoyam noodles were FMC, SS, and BT of 47.5%, 700 rpm and 50°C, respectively, as cocoyam noodles obtained at these conditions had comparable properties and were most preferred and accepted by the sensory panelists.
AB - The current industrial demand for starchy foods has been dominated by other roots and tubers, while cocoyam, despite being rich in fiber, minerals, and vitamins has remained under exploited. In this study, the effect of feed moisture content (FMC), screw speed (SS) and barrel temperature (BT) on the quality characteristics of cocoyam noodles (proximate, thermo-physical, physicochemical, texture, color, extrudate properties, and sensory characteristics) were investigated using central composite design (CCD) of response surface methodology (RSM). Flour was produced from fresh tubers of cocoyam (Xanthosoma sagittifolium) and subsequently processed into noodles using a twin screw extruder. Results showed that the proximate compositions, thermo-physical, physicochemical properties, and color of the cocoyam noodles were significantly (p < 0.05) influenced by the extrusion process variables. The texture and extrudate properties of cocoyam noodles were equally significantly (p < 0.05) different. The experimental data obtained and predicted values of the response models were comparable, with statistical indices [absolute average deviation (AAD, 0–0.23), bias factor (Bf, 1–1.08), and accuracy factor (Af, 1–1.23)] indicating the validity of the derived models. The optimal extrusion processing conditions for quality cocoyam noodles were FMC, SS, and BT of 47.5%, 700 rpm and 50°C, respectively, as cocoyam noodles obtained at these conditions had comparable properties and were most preferred and accepted by the sensory panelists.
KW - Cocoyam
KW - extrusion
KW - noodles
KW - optimization
KW - quality attributes
UR - http://www.scopus.com/inward/record.url?scp=85054159244&partnerID=8YFLogxK
U2 - 10.1002/fsn3.786
DO - 10.1002/fsn3.786
M3 - Article
AN - SCOPUS:85054159244
SN - 2048-7177
VL - 6
SP - 2210
EP - 2226
JO - Food Science and Nutrition
JF - Food Science and Nutrition
IS - 8
ER -