TY - JOUR
T1 - Process modelling of chemical looping combustion of paper, plastics, paper/plastic blend waste, and coal
AU - Yaqub, Zainab T.
AU - Oboirien, Bilainu O.
N1 - Publisher Copyright:
Copyright © 2020 American Chemical Society.
PY - 2020/9/8
Y1 - 2020/9/8
N2 - Chemical looping combustion (CLC) is a novel carbon capture and storage technology that can be used in the proper disposal of municipal solid waste when used as a solid fuel. In this study, the results of the CLC of paper, plastics, and paper/plastic blends were compared with CLC of South African coal using Chemcad software. The simulation was done for two different CLC processes, namely, chemical looping oxygen uncoupling (CLOU) and in situ gasification CLC (IG-CLC). The results demonstrated that coal at 66% had a lower CO2 yield than paper (86%) but a higher yield than all the plastic samples in CLOU (3356%) and an equal CO2 yield in paper and all plastic samples in IG-CLC. Furthermore, coal had a lower CO2 gas yield than all the optimum blends (72-85%) for CLOU and an equal yield with the entire paper/plastic blend in IG-CLC. On combustion efficiency, coal has a lower combustion efficiency at 80% than paper and polyvinyl chloride (PVC) at 90 and 96%, respectively, but a higher efficiency than other plastic samples that are between 30 and 70% in CLOU while in IG-CLC, it had a lower efficiency than paper, PVC, and polyethylene terephthalate and higher efficiency than high-density polyethylene, low-density polyethylene, polypropylene, and polystyrene. For paper/plastic blends, coal has higher combustion efficiency than all the paper/plastic blends in both CLOU and IG-CLC processes except for the paper/PVC where the combustion efficiency was higher than coal.
AB - Chemical looping combustion (CLC) is a novel carbon capture and storage technology that can be used in the proper disposal of municipal solid waste when used as a solid fuel. In this study, the results of the CLC of paper, plastics, and paper/plastic blends were compared with CLC of South African coal using Chemcad software. The simulation was done for two different CLC processes, namely, chemical looping oxygen uncoupling (CLOU) and in situ gasification CLC (IG-CLC). The results demonstrated that coal at 66% had a lower CO2 yield than paper (86%) but a higher yield than all the plastic samples in CLOU (3356%) and an equal CO2 yield in paper and all plastic samples in IG-CLC. Furthermore, coal had a lower CO2 gas yield than all the optimum blends (72-85%) for CLOU and an equal yield with the entire paper/plastic blend in IG-CLC. On combustion efficiency, coal has a lower combustion efficiency at 80% than paper and polyvinyl chloride (PVC) at 90 and 96%, respectively, but a higher efficiency than other plastic samples that are between 30 and 70% in CLOU while in IG-CLC, it had a lower efficiency than paper, PVC, and polyethylene terephthalate and higher efficiency than high-density polyethylene, low-density polyethylene, polypropylene, and polystyrene. For paper/plastic blends, coal has higher combustion efficiency than all the paper/plastic blends in both CLOU and IG-CLC processes except for the paper/PVC where the combustion efficiency was higher than coal.
UR - http://www.scopus.com/inward/record.url?scp=85091022158&partnerID=8YFLogxK
U2 - 10.1021/acsomega.0c02880
DO - 10.1021/acsomega.0c02880
M3 - Article
AN - SCOPUS:85091022158
SN - 2470-1343
VL - 5
SP - 22420
EP - 22429
JO - ACS Omega
JF - ACS Omega
IS - 35
ER -