Abstract
The goal of this study was to introduce an effective visible-light induced photocatalytic system with a good ability for photocatalytic oxidative desulfurization (PODS) and denitrogenation (PODN) using molecular oxygen (O2) as an oxidant. In this regard, tungestophosphoric acid (PW12) was supported onto cerium-doped NH2-UiO-66 (PW12/Ce-NUiO-66) and employed for the photo-oxidation of dibenzothiophene (DBT) and quinoline (Qu). Herein, using cerium (Ce) as a “mediator” facilitated the separation of charge carriers, while NH2-UiO-66 remarkably enhanced the surface area with plentiful adsorption sites and shifted the adsorption edge of PW12to the visible region. The sum of these factors resulted in superior photocatalytic ability and maximum efficiency of 99 ± 1% was achieved by using 30PW12/Ce-NUiO-66 as the optimum photocatalyst in the PODN system and 89 ± 1% in the PODS system under visible light irradiation for 90 min. The traditional Z-scheme mechanism was proposed as the main pathway for this photocatalytic system.
Original language | English |
---|---|
Pages (from-to) | 10897-10906 |
Number of pages | 10 |
Journal | New Journal of Chemistry |
Volume | 45 |
Issue number | 24 |
DOIs | |
Publication status | Published - 28 Jun 2021 |
Externally published | Yes |
ASJC Scopus subject areas
- Catalysis
- General Chemistry
- Materials Chemistry